Issue |
EPJ Web Conf.
Volume 287, 2023
EOS Annual Meeting (EOSAM 2023)
|
|
---|---|---|
Article Number | 05009 | |
Number of page(s) | 2 | |
Section | Topical Meeting (TOM) 5- Optical Materials | |
DOI | https://doi.org/10.1051/epjconf/202328705009 | |
Published online | 18 October 2023 |
https://doi.org/10.1051/epjconf/202328705009
Exciton fine structure of a single highly anisotropic CsPbBr3 nanocrystal
1 Institut des NanoSciences de Paris, CNRS UMR 7588, Sorbonne Université, F-75005 Paris, France ;
2 LR01ES15 Laboratoire de Physique des Matériaux: Structure et Propriétés, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte 7021, Tunisia ;
* Corresponding author: chamarro@insp.jussieu.fr
Published online: 18 October 2023
We measured the photoluminescence (PL) of single CsPbBr3 nanocrystals (NCs) that have a highly anisotropic shape and orthorhombic crystal phase. As the thickness of these NCs is much more smaller than the other two dimensions, they are also called nanoplatelets (NPLs). We obtain PL spectra characterized by doublets separated in energy by about 2 meV in average and showing orthogonal and linearly polarized polar lines. We identified these doublets as the two bright-exciton states of the exciton fine structure contained in the plane of the NPLs. By a comparison between theory and experiments, we were able to obtain fundamental parameters as tetragonal and orthorhombic crystal field. We measured and analysed the time-resolved PL evolution as a function of temperature of small ensemble of NPLs. We thus succeed at framing the experimental value of the bright-dark exciton splitting (5-7meV) that is slightly smaller than the theoretical value.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.