Issue |
EPJ Web Conf.
Volume 287, 2023
EOS Annual Meeting (EOSAM 2023)
|
|
---|---|---|
Article Number | 13018 | |
Number of page(s) | 2 | |
Section | Focused Sessions (FS) 4- Machine Learning and Photonic Artificial Intelligence / Optical Neural Networks and Neuromorphic Computing | |
DOI | https://doi.org/10.1051/epjconf/202328713018 | |
Published online | 18 October 2023 |
https://doi.org/10.1051/epjconf/202328713018
Machine-learning applied to the simulation of high harmonic generation driven by structured laser beams
Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada Universidad de Salamanca, Pl. Merced s/n, E-37008 Salamanca, Spain
* e-mail: jmpablosm@usal.es
Published online: 18 October 2023
High harmonic generation (HHG) is one of the richest processes in strong-field physics. It allows to up-convert laser light from the infrared domain into the extreme-ultraviolet or even soft x-rays, that can be synthesized into laser pulses as short as tens of attoseconds. The exact simulation of such highly non-linear and non-perturbative process requires to couple the laser-driven wavepacket dynamics given by the three-dimensional time-dependent Schrödinger equation (3D-TDSE) with the Maxwell equations to account for macroscopic propagation. Such calculations are extremely demanding, well beyond the state-of-the-art computational capabilities, and approximations, such as the strong field approximation, need to be used. In this work we show that the use of machine learning, in particular deep neural networks, allows to simulate macroscopic HHG within the 3D-TDSE, revealing hidden signatures in the attosecond pulse emission that are neglected in the standard approximations. Our HHG method assisted by artificial intelligence is particularly suited to simulate the generation of soft x-ray structured attosecond pulses.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.