Issue |
EPJ Web Conf.
Volume 293, 2024
mm Universe 2023 - Observing the Universe at mm Wavelengths
|
|
---|---|---|
Article Number | 00019 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/epjconf/202429300019 | |
Published online | 28 March 2024 |
https://doi.org/10.1051/epjconf/202429300019
A machine learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel’dovich maps with The Three Hundred clusters
1 Instituto de Astrofísica de Canarias (IAC), C/ Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain
2 Universidad de La Laguna, Departamento de Astrofísica, C/ Astrofísico Francisco Sánchez s/n, E-38206 La Laguna, Tenerife, Spain
3 Dipartimento di Fisica, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
4 Departamento de Física Téorica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
5 Centro de Investigación Avanzada en Física Fundamental (CIAFF), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
6 Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, United Kingdom
7 EURANOVA, Mont-Saint-Guibert, Belgium
8 Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
9 INAF - Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma, Italy
10 IFPU - Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy
11 INAF Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34131, Trieste, Italy
* e-mail: antonio.ferragamo@uniroma1.it
Published online: 28 March 2024
Our study introduces a new machine learning algorithm for estimating 3D cumulative radial profiles of total and gas mass in galaxy clusters from thermal Sunyaev-Zel’dovich (SZ) effect maps. We generate mock images from 2522 simulated clusters, employing an autoencoder and random forest in our approach. Notably, our model makes no prior assumptions about hydrostatic equilibrium. Our results indicate that the model successfully reconstructs unbiased total and gas mass profiles, with a scatter of approximately 10%. We analyse clusters in various dynamical states and mass ranges, finding that our method’s accuracy and precision are consistent. We verify the capabilities of our model by comparing it with the hydrostatic equilibrium technique, showing that it accurately recovers total mass profiles without any bias.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.