Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 8 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202429503010 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429503010
DUNE Database Development
1 Colorado State University
2 Brookhaven National Lab (US)
* e-mail: avizcaya@colostate.edu
** e-mail: lino.oscar.gerlach@cern.ch
Published online: 6 May 2024
The DUNE experiment will produce vast amounts of metadata, which describe the data coming from the read-out of the primary DUNE detectors. Various databases will make up the overall DB architecture for this metadata. ProtoDUNE at CERN is the largest existing prototype for DUNE and serves as a testing ground for - among other things - possible database solutions for DUNE. The subset of all metadata that is accessed during offline data reconstruction and analysis is referred to as ‘conditions data’ and it is stored in a dedicated database. As offline data reconstruction and analysis will be deployed on HTC and HPC resources, conditions data is expected to be accessed at very high rates. It is therefore crucial to store it in a granularity that matches the expected access patterns allowing for extensive caching. This requires a good understanding of the sources and use cases of conditions data. This contribution will briefly summarize the database architecture deployed at ProtoDUNE and explain the various sources of conditions data. We will present how the conditions data is retrieved and streamed from the databases and how it is handled to match expected access patterns.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.