Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 07009 | |
Number of page(s) | 7 | |
Section | Facilities and Virtualization | |
DOI | https://doi.org/10.1051/epjconf/202429507009 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429507009
Coffea-Casa: Building composable analysis facilities for the HL-LHC
1 University of Nebraska-Lincoln, Lincoln, NE 68588
2 Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI 53715
* e-mail: oksana.shadura@cern.ch
Published online: 6 May 2024
The large data volumes expected from the High Luminosity LHC (HL-LHC) present challenges to existing paradigms and facilities for end-user data analysis. Modern cyberinfrastructure tools provide a diverse set of services that can be composed into a system that provides physicists with powerful tools that give them straightforward access to large computing resources, with low barriers to entry. The Coffea-Casa analysis facility (AF) provides an environment for end users enabling the execution of increasingly complex analyses such as those demonstrated by the Analysis Grand Challenge (AGC) and capturing the features that physicists will need for the HL-LHC.
We describe the development progress of the Coffea-Casa facility featuring its modularity while demonstrating the ability to port and customize the facility software stack to other locations. The facility also facilitates the support of batch systems while staying Kubernetes-native. We present the evolved architecture of the facility, such as the integration of advanced data delivery services (e.g. ServiceX) and making data caching services (e.g. XCache) available to end users of the facility. We also highlight the composability of modern cyberinfrastructure tools. To enable machine learning pipelines at coffee-casa analysis facilities, a set of industry ML solutions adopted for HEP columnar analysis were integrated on top of existing facility services. These services also feature transparent access for user workflows to GPUs available at a facility via inference servers while using Kubernetes as enabling technology.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.