Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 07009 | |
Number of page(s) | 7 | |
Section | Facilities and Virtualization | |
DOI | https://doi.org/10.1051/epjconf/202429507009 | |
Published online | 06 May 2024 |
- M. Adamec, G. Attebury, K. Bloom, B. Bockelman, C. Lundstedt, O. Shadura, J. Thiltges, Coffea-casa: an analysis facility prototype, in EPJ Web of Conferences (EDP Sciences, 2021), Vol. 251, p. 02061 [CrossRef] [EDP Sciences] [Google Scholar]
- N. Smith, L. Gray, M. Cremonesi, B. Jayatilaka, O. Gutsche, A. Hall, K. Pedro, M. Acosta, A. Melo, S. Belforte et al., EPJ Web Conf. 245, 06012 (2020) [Google Scholar]
- B. Galewsky, R. Gardner, L. Gray, M. Neubauer, J. Pivarski, M. Proffitt, I. Vukotic, G. Watts, M. Weinberg, EPJ Web Conf. 245, 04043 (2020) [Google Scholar]
- Project Jupyter Contributors, “Zero to JupyterHub with Kubernetes”, JupyterHub for Kubernetes, 2023, https://z2jh.jupyter.org/ [Google Scholar]
- E.A. Brewer, Kubernetes and the path to cloud native, in Proceedings of the sixth ACM symposium on cloud computing (2015), pp. 167–167 [Google Scholar]
- L. Bauerdick, K. Bloom, B. Bockelman, D. Bradley, S. Dasu, J. Dost, I. Sfiligoi, A. Tadel, M. Tadel, F. Wuerthwein et al., XRootd, disk-based, caching proxy for optimization of data access, data placement and data replication, in Journal of Physics: Conference Series (IOP Publishing, 2014), Vol. 513, p. 042044 [CrossRef] [Google Scholar]
- MLflow Project, a Series of LF Projects, LLC., mlflow, https://mlflow.org/ [Google Scholar]
- NVIDIA Development Team, NVIDIA Triton Inference Server, https://developer. nvidia.com/triton-inference-server [Google Scholar]
- Dask Development Team, Dask-Jobqueue, https://jobqueue.dask.org/en/ latest/ [Google Scholar]
- D. Thain, T. Tannenbaum, M. Livny, Concurrency - Practice and Experience 17, 323 (2005) [CrossRef] [Google Scholar]
- Dask Development Team, Dask: Library for dynamic task scheduling, https://dask.org (2016) [Google Scholar]
- N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, C. Mortimore, The OpenID Foundation p. S3 (2014) [Google Scholar]
- IRIS-HEP, Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP), https://iris-hep.org/ [Google Scholar]
- E. Bisong, E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners pp. 671–685 (2019) [Google Scholar]
- S. Alla, S.K. Adari, S. Alla, S.K. Adari, Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure pp. 79–124 (2021) [Google Scholar]
- E. Kauffman, A. Held, O. Shadura, Analysis Grand Challenge ReadTheDocs, https://agc.readthedocs.io/en/latest/ [Google Scholar]
- F. Beetz, S. Harrer, IEEE Software 39, 70 (2021) [Google Scholar]
- Coffea Casa AF Developers, Repository with configuration setup of a prototype of analysis facility - coffea-casa, 2023, https://github.com/CoffeaTeam/coffea-casa [Google Scholar]
- A. Held, O. Shadura, PoS 235 (2022) [Google Scholar]
- A. Held, E. Kauffman, O. Shadura, E. Guiraud, M. Feickert, J. Chakraborty, M. Proffitt, A. Wightman, K. Choi, E. Chavez et al., Analysis Grand Challenge, https://doi. org/10.5281/zenodo.7274936 [Google Scholar]
- L. Gray, N. Smith, B. Tovar, A. Novak, J. Chakraborty, P. Fackeldey, N. Hartmann, G. Watts, D. Thain, G. Stark et al., coffea, https://doi.org/10.5281/zenodo. 3266454 [Google Scholar]
- D. Piparo, P. Canal, E. Guiraud, X.V. Pla, G. Ganis, G. Amadio, A. Naumann, E. Tejedor, Rdataframe: Easy parallel root analysis at 100 threads, in EPJ Web of Conferences (EDP Sciences, 2019), Vol. 214, p. 06029 [CrossRef] [EDP Sciences] [Google Scholar]
- J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, SIAM review 59, 65 (2017) [CrossRef] [Google Scholar]
- Columnflow development team, Columnflow, https://columnflow.readthedocs. io/en/stable/ [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.