Issue |
EPJ Web Conf.
Volume 304, 2024
HINPw7 – 7th International Workshop of the Hellenic Institute of Nuclear Physics on Nuclear Structure, Astrophysics and Reaction Dynamics
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 6 | |
Section | Reaction Dynamics | |
DOI | https://doi.org/10.1051/epjconf/202430401008 | |
Published online | 08 October 2024 |
https://doi.org/10.1051/epjconf/202430401008
Neural networks for evaluating induced fission product yields
Department of Physics, University of Thessaly, 3rd km Old National Road Lamia Athens, Lamia, 35100, Fthiotida, Greece
* e-mail: vprassa@uth.gr
Published online: 8 October 2024
Fission product yields (FPYs) play a crucial role in various aspects of nuclear science and technology, including nuclear structure and reactions. However, the inherent constraints of traditional computational methods used in theoretical models, and lack of experimental access to key observables pose challenges in obtaining accurate and comprehensive fission data. Neural Networks (NNs) present a promising solution to address these challenges by effectively modeling and acquiring energy-dependent fission yields. Mixture Density Networks (MDNs) enable learning from available data, predicting unknowns, and quantifying uncertainties simultaneously. Our study demonstrates the effectiveness of MDNs in evaluating fission product yields, particularly in scenarios where experimental data are incomplete. Machine learning algorithms like Gaussian Process Regression (GPR) can capture the distribution of single-fission yields and generate high-quality samples. These samples serve as valuable inputs for MDN networks. This study introduces an MDN approach for evaluating energy-dependent fission mass yields. The results of MDN evaluations indicate satisfactory accuracy in determining both the distribution positions and energy dependencies of FPYs.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.