Issue |
EPJ Web Conf.
Volume 304, 2024
HINPw7 – 7th International Workshop of the Hellenic Institute of Nuclear Physics on Nuclear Structure, Astrophysics and Reaction Dynamics
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 5 | |
Section | Exotic – Weakly Bound Nuclei | |
DOI | https://doi.org/10.1051/epjconf/202430403001 | |
Published online | 08 October 2024 |
https://doi.org/10.1051/epjconf/202430403001
Importance of elastic scattering in nucleon-exotic nucleus experiments
1 Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, South Africa, 2006
2 School of Physics, The University of Melbourne, Victoria, Australia, 3010
* e-mail: s.karataglidis@unimelb.edu.au
Published online: 8 October 2024
In any experiment involving the interaction of two hadronic, many-body systems, the underlying interaction is conventionally described by an optical potential. Usually, this is of phenomenological, local, form, with real and imaginary parts each of which has parameters which are determined by fits to elastic scattering data. In order to predict observables for a wide range of targets, those data must cover a wider range of nuclei so that experiments with individual targets may be described appropriately. Further, for other experiments, obtaining the relative wave functions between the interacting systems requires the optical potential. Unfortunately, for nuclei far from the valley of stability such a global approach is inappropriate given the large differences in density at the surfaces due to halos and skins. In that case, phenomenology requires the measurements of elastic scattering data for the specific interacting systems. An alternative approach is to use microscopic formulations of the optical potential, such as the Melbourne g-folding potential. Aspects of both of these approaches for intermediate energies, given the interest in establishing facilities for exotic nuclear experiments at intermediate energies, will be discussed.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.