Open Access
Issue
EPJ Web of Conferences
Volume 33, 2012
2nd European Energy Conference
Article Number 01009
Number of page(s) 6
Section Systems Aspects
DOI https://doi.org/10.1051/epjconf/20123301009
Published online 02 October 2012
  1. H. Lund, B.V. Mathiesen, Energy system analysis of 100% renewable energy systems: The case of Denmark in years 2030 and 2050, Energy, 34 (2009), (2009) 524–531. [CrossRef] [Google Scholar]
  2. D. Tonini, T. Astrup, Life-cycle assessment of biomass-based energy systems: a case study for Denmark Appl. Energy (accepted) (2012). [Google Scholar]
  3. B.V. Mathiesen, H. Lund, K. Karlsson, 100% Renewable energy systems, climate mitigation and economic growth, Appl. Energy 88 (2011) 488–501. [CrossRef] [Google Scholar]
  4. B.V. Mathiesen, H. Lund, P. Noergaard, Integrated transport and renewable energy systems, Utilities Policy 16 (2008) 107–116. [CrossRef] [Google Scholar]
  5. B.V. Mathiesen, H. Lund, F.K. Hvelplund, N.S. Bentsen, D. Tonini, P.E. Morthorst, H. Wenzel, T. Astrup, N.I. Meyer, M. Münster, P.A. Østergaard, M.P. Nielsen, E. Schaltz, J.R. Pillai, L. Hamelin, C. Felby, K. Heussen, P. Karnøe, L. Pade, F.M. Andersen, K. Hansen, CEESA 100% Renewable Energy Scenarios towards 2050, Aalborg University. Available from: http://www.ceesa.plan.aau.dk (accessed December 2011) (2011). [Google Scholar]
  6. H. Wenzel, Breaking the Biomass Bottleneck of the Fossil Free Society, Concito, Frederiksberg, Denmark ID: 302 (2010). [Google Scholar]
  7. T.D. Searchinger, Biofuels and the need for additional carbon, Environmental Research Letters, 5 (2010) 024007–024007. [CrossRef] [Google Scholar]
  8. R. Edwards, D. Mulligan, L. Marelli, Indirect land use change from increased biofuels demand. Comparison of models and results for marinal biofuels production from different feedstocks, EUR 24485 (2010). [Google Scholar]
  9. Searchinger T., Heimlich R., Houghton R.A., Dong F., Elobeid A., Fabiosa J., Tokgoz S., Hayes D., Yu T.-H., Yu T.-H., Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change, Science, 319 (2008), 1238–1240. [CrossRef] [PubMed] [Google Scholar]
  10. C.V. Beale, S.P. Long, Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus x giganteus and Spartina cynosuroides, Biomass & bioenergy, 12 (1997) 419–428. [Google Scholar]
  11. L. Hamelin, U. Joergensen, B.M. Petersen, J.E. Olesen, H. Wenzel, Modelling the environmental consequences of direct land use changes from energy crops in Denmark: a consequential life cycle inventory, GCB Bioenergy (2012). [Google Scholar]
  12. ISO 14040, Environmental Management-Life Cycle Assessment-Principles and Framework, 2nd ed. (2006). [Google Scholar]
  13. ISO 14040, Environmental Management-Life Cycle Assessment-Requirements and Guidelines, 1st ed. (2006). [Google Scholar]
  14. L. Hamelin, M. Wesnaes, H. Wenzel, B.M. Petersen, Environmental Consequences of Future Biogas Technologies Based on Separated Slurry, in Environ. Sci. Technol. 45 (2011) 5869–5877. [CrossRef] [PubMed] [Google Scholar]
  15. M. Hauschild, J. Potting, Spatial differentiation in Life Cycle impact assessment – The EDIP2003 methodology Environmental News No. 80 (2005). [Google Scholar]
  16. H. Wenzel, M.Z. Hauschild, L. Alting, Environmental Assessment of Products, Volume 1 (1997) [CrossRef] [Google Scholar]
  17. Pre’ Consultants, Simapro 7.1, www.pre.nl (accessed 2009). [Google Scholar]
  18. B. Weidema, N. Frees, A.M. Nielsen, Marginal production technologies for Life Cycle Inventories, Int J Life Cycle Assess 4 (1999) 48–56. [CrossRef] [Google Scholar]
  19. J.H. Schmidt, System delimitation in agricultural consequential LCA – Outline of methodology and illustrative case study of wheat in Denmark, 13 (2008), 350–364. [Google Scholar]
  20. R. Dalgaard, J. Schmidt H. N. Halberg, P. Christensen, M. Thrane, W. Pengue A., LCA of Soybean Meal, International Journal of Life Cycle Assessment 13 (2008) 240–254. [CrossRef] [Google Scholar]
  21. J.H. Kloeverpris, Consequential life cycle inventory modelling of land use induced by crop consumption, PhD thesis, Technical University of Denmark (DTU), Lyngby, Denmark. (2008). [Google Scholar]
  22. R. Edwards, S. Szekeres, F. Neuwahl, V. Mahieu, Biofuels in the European context: facts and uncertainties, (2008). [Google Scholar]
  23. W. Tyner, F. Taheripour, Q. Zhuang, D. Birur, U. Baldos, Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis, (2010). [Google Scholar]
  24. D. Laborde, Assessing the Land Use Change Consequences of European Biofuel Policies, International Food Policy Institute, Washington, DC, (USA) (2011). [Google Scholar]
  25. R. Müller-Wenk, R. Müller-Wenk, M. Brandao, Climatic impact of land use in LCA – carbon transfers between vegetation/soil and air, The International Journal of Life Cycle Assessment 15 (2010) 172–182. [CrossRef] [Google Scholar]
  26. Danish Ministry of Food, Agriculture and Fisheries, Plantedirektoratets bekendtgoerelse nr. 786 af 22. juli 2008 om jordbrugets anvendelse af goedning og om plantedaekke i planteperiode 2008/2009, (2008). [Google Scholar]
  27. Danish Ministry of Food, Agriculture and Fisheries, The Danish Plant Directorate. Vejledning om goedsknings-og harmoniregler. Planperioden 1.august 2009 til 31.juli 2010, (2009). [Google Scholar]
  28. H. Uellendahl, G. Wang, H.B. Moller, U. Jorgensen, I.V. Skiadas, H.N. Gavala, B.K. Ahring, Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation, Water Science and Technology 58 (2008) 1841–1847. [CrossRef] [Google Scholar]
  29. L. Hamelin, M. Wesnæs, H. Wenzel, B.M. Petersen, Life cycle assessment of biogas from separated slurry, Environmental project 1329 (2010) [Google Scholar]
  30. Fichtner, The Viability of Advanced Thermal Treatment of MSW in the UK, Fichtner Consulting Engineers Ltd (2004). [Google Scholar]
  31. Danish Energy Agency (DEA), Technology data for energy plants, Copenhagen (Denmark): Energistyrelsen (Danish Energy agency) (2010). [Google Scholar]
  32. N. Jungbluth, M. Chudacoff, A. Dauriat, F. Dinkel, G. Doka, E.M. Faist, E. Gnansounou, N. Kljun, K. Schleiss, M. Spielmann, C. Stettler, J. Sutter, Life Cycle Inventories of Bioenergy, Swiss Centre for Life Cycle Inventories, ESU-services, Uster, CH Ecoinvent report No 17 (2007). [Google Scholar]
  33. DONG energy, Avedoerevaerket – Groent regnskab 2008, DONG energy; Hvidovre, Denmark ROS 432-0007 (2009). [Google Scholar]
  34. M. Nielsen, O.-. Nielsen, M. Thomsen, Emissions from decentralised CHP plants 2007, Energinet. dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf (2010). [Google Scholar]
  35. P. Kofman, R. Spinelli, Storage and handling of willow from SRC, ELSAMPROJEKT 87-986376-2-2 (1997). [Google Scholar]
  36. I.R. Emery, N.S. Mosier, The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuel production, Biomass & bioenergy, available on-line (2012). [PubMed] [Google Scholar]
  37. IPCC, Chapter 11: N2O emissions from managed soils and CO2 emissions from lime and urea application, in: Anonymous 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2006. [Google Scholar]
  38. B. Amon, V. Kryvoruchko, V. Amon, S. Zechmeister-Boltenstern, Zechmeister-Boltenstern, Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment, Agriculture, ecosystems & environment 112 (2006) 153–162. [CrossRef] [Google Scholar]
  39. J. Clemens, M. Trimborn, P. Weiland, B. Amon, Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry, Agriculture, ecosystems & environment 112 (2006) 171–177. [CrossRef] [Google Scholar]
  40. T. Matsunaka, T. Sawamoto, H. Ishimura, K. Takakura, A. Takekawa, Efficient use of digested cattle slurry from biogas plant with respect to nitrogen recycling in grassland, Int. Congr. Ser. 1293 (2006) 242–252. [CrossRef] [Google Scholar]
  41. S. Bruun, T.L. Hansen, T.H. Christensen, J. Magid, L.S. Jensen, Application of processed organic municipal solid waste on agricultural land – A scenario analysis, Environ Model Assess 11 (2006) 251–265. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.