Open Access
Issue
EPJ Web of Conferences
Volume 55, 2013
SOS 2012 – IN2P3 School of Statistics
Article Number 02001
Number of page(s) 20
Section Multivariate Analysis Tools
DOI https://doi.org/10.1051/epjconf/20135502001
Published online 01 July 2013
  1. C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995. [Google Scholar]
  2. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006. [Google Scholar]
  3. N. Cristianini and J. Shawe-Taylor, Kernel methods for pattern recognition, Cambridge University Press, 2004. [Google Scholar]
  4. L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer, New York, 1996. [CrossRef] [Google Scholar]
  5. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, 2009. [CrossRef] [MathSciNet] [Google Scholar]
  6. K.P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, Cambridge, MA, 2012. [Google Scholar]
  7. Y. Freund and R.E. Schapire, Boosting: Foundations and Algorithms, MIT Press, Cambridge, MA, 2012. [Google Scholar]
  8. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995. [CrossRef] [Google Scholar]
  9. V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998. [Google Scholar]
  10. J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Journal of Machine Learning Research, 2012. [Google Scholar]
  11. Y. Bengio, “Gradient-based optimization of hyperparameters,” Neural Computation, vol. 12, no. 8, pp. 1889–1900, 2000. [CrossRef] [PubMed] [Google Scholar]
  12. C. E. Rasmussen and C. K. I. Williams, http://www.gaussianprocess.org/gpmlGaussian Processes for Machine Learning, MIT Press, 2006. [Google Scholar]
  13. Y. Bengio, A.C. Courville, and P. Vincent, “Unsupervised feature learning and deep learning: A review and new perspectives,” CoRR, vol. abs/1206.5538, 2012. [Google Scholar]
  14. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing (almost) from scratch,” Journal of Machine Learning Research, vol. 12, pp. 2493–2537, 2011. [Google Scholar]
  15. A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems. 2012, vol. 25, MIT Press. [Google Scholar]
  16. J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio, “Algorithms for hyperparameter optimization,” in Advances in Neural Information Processing Systems (NIPS). The MIT Press, 2011, vol. 24. [Google Scholar]
  17. J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of machine learning algorithms,” in Advances in Neural Information Processing Systems, 2012, vol. 25. [Google Scholar]
  18. C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: Automated selection and hyper-parameter optimization of classification algorithms,” Tech. Rep., http://arxiv.org/abs/1208.3719, 2012. [Google Scholar]
  19. R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, “Collaborative hyperparameter tuning,” in International Conference on Machine Learning (ICML), 2013. [Google Scholar]
  20. D. S. Johnson and F. P. Preparata, “The densest hemisphere problem,” Theoretical Computer Science, vol. 6, pp. 93–107, 1978. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by backpropagating errors,” Nature, vol. 323, pp. 533–536, 1986. [NASA ADS] [CrossRef] [Google Scholar]
  22. B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers,” in Fifth Annual Workshop on Computational Learning Theory, 1992, pp. 144–152. [CrossRef] [Google Scholar]
  23. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. [Google Scholar]
  24. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol. 55, pp. 119–139, 1997. [CrossRef] [Google Scholar]
  25. P. Bartlett, “The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 525–536, 1998. [CrossRef] [Google Scholar]
  26. I. Nabney, Netlab: Algorithms for Pattern Recognition, Springer, 2002. [Google Scholar]
  27. L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in Advances in Neural Information Processing Systems, 2008, vol. 20, pp. 161–168. [Google Scholar]
  28. L. Mason, P. Bartlett, J. Baxter, and M. Frean, “Boosting algorithms as gradient descent,” in Advances in Neural Information Processing Systems. 2000, vol. 12, pp. 512–518, The MIT Press. [Google Scholar]
  29. L. Mason, P. Bartlett, and J. Baxter, “Improved generalization through explicit optimization of margins,” Machine Learning, vol. 38, no. 3, pp. 243–255, March 2000. [CrossRef] [Google Scholar]
  30. M. Collins, R.E. Schapire, and Y. Singer, “Logistic regression, AdaBoost and Bregman distances,” Machine Learning, vol. 48, pp. 253–285, 2002. [CrossRef] [Google Scholar]
  31. R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the margin: a new explanation for the effectiveness of voting methods,” Annals of Statistics, vol. 26, no. 5, pp. 1651–1686, 1998. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated predictions,” Machine Learning, vol. 37, no. 3, pp. 297–336, 1999. [CrossRef] [Google Scholar]
  33. P. Viola and M. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, pp. 137–154, 2004. [CrossRef] [Google Scholar]
  34. G. Dror, M. Boullé, I. Guyon, V. Lemaire, and D. Vogel, Eds., Proceedings of KDD-Cup 2009 competition, vol. 7 of JMLR Workshop and Conference Proceedings, 2009. [Google Scholar]
  35. Olivier Chapelle and Yi Chang, “Yahoo! Learning-to-Rank Challenge overview,” in Yahoo! Learning-to-Rank Challenge (JMLR W&CP), 2011, vol. 14, pp. 1–24. [Google Scholar]
  36. L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and Blum M., “reCAPTCHA: Human-based character recognition via web security measures,” Science, vol. 321, no. 5895, pp. 1465–1468, 2008. [CrossRef] [PubMed] [Google Scholar]
  37. L. Von Ahn and L. Dabbish, “Labeling images with a computer game,” in Conference on Human factors in computing systems (CHI04), 2004, pp. 319–326. [Google Scholar]
  38. L. Von Ahn, “Games with a purpose,” Computer, vol. 39, no. 6, 2006. [CrossRef] [Google Scholar]
  39. S. Roweis and Saul L. K., “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, pp. 2323–2326, 2000. [Google Scholar]
  40. J. B. Tenenbaum, V. de Silva, and Langford J. C., “A global geometric framework for nonlinear dimensionality reduction,” Science, vol. 290, pp. 2319–2323, 2000. [CrossRef] [PubMed] [Google Scholar]
  41. A. Beygelzimer, J. Langford, and B. Zadrozny, Performance Modeling and Engineering, chapter Machine Learning Techniques–Reductions Between Prediction Quality Metrics, Springer, 2008. [Google Scholar]
  42. J. Bennett and S. Lanning, “The Netflix prize,” in KDDCup 2007, 2007. [Google Scholar]
  43. N. Casagrande, D. Eck, and B. Kégl, “Geometry in sound: A speech/music audio classifier inspired by an image classifier,” in International Computer Music Conference, Sept. 2005, vol. 17. [Google Scholar]
  44. J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl, “Aggregate features and AdaBoost for music classification,” Machine Learning Journal, vol. 65, no. 2/3, pp. 473–484, 2006. [CrossRef] [Google Scholar]
  45. B. Kégl, R. Busa-Fekete, K. Louedec, R. Bardenet, X. Garrido, I.C. Mariş, D. Monnier-Ragaigne, S. Dagoret-Campagne, and M. Urban, “Reconstructing Nµ19(1000),” Tech. Rep. 2011-054, Auger Project Technical Note, 2011. [Google Scholar]
  46. Pierre Auger Collaboration, “Pierre Auger project design report,” Tech. Rep., Pierre Auger Observatory, 1997. [Google Scholar]
  47. R. Busa-Fekete, B. Kégl, T. Éltető, and Gy. Szarvas, “Ranking by calibrated AdaBoost,” in Yahoo! Ranking Challenge 2010 (JMLR workshop and conference proceedings), 2011, vol. 14, pp. 37–48. [Google Scholar]
  48. R. Busa-Fekete, B. Kégl, T. Éltető, and Gy. Szarvas, “A robust ranking methodology based on diverse calibration of AdaBoost,” in European Conference on Machine Learning, 2011, vol. 22, pp. 263–279. [Google Scholar]
  49. V. Gligorov and M. Williams, “Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree,” Tech. Rep., arXiv:1210.6861, 2012. [Google Scholar]
  50. Y. Takizawa, T. Ebisuzaki, Y. Kawasaki, M. Sato, M. E. Bertaina, H. Ohmori, Y. Takahashi, F. Kajino, M. Nagano, N. Sakaki, N. Inoue, H. Ikeda, Y. Arai, Y. Takahashi, T. Murakami, James H. Adams, and the JEM-EUSO Collaboration, “JEM-EUSO: Extreme Universe Space Observatory on JEM/ISS,” Nuclear Physics B - Proceedings Supplements, vol. 166, pp. 72–76, 2007. [CrossRef] [Google Scholar]
  51. V. Gligorov, “A single track HLT1 trigger,” Tech. Rep. LHCb-PUB-2011-003, CERN, 2011. [Google Scholar]
  52. L. Bourdev and J. Brandt, “Robust object detection via soft cascade,” in Conference on Computer Vision and Pattern Recognition. 2005, vol. 2, pp. 236–243, IEEE Computer Society. [Google Scholar]
  53. R. Xiao, L. Zhu, and H. J. Zhang, “Boosting chain learning for object detection,” in Ninth IEEE International Conference on Computer Vision, 2003, vol. 9, pp. 709–715. [CrossRef] [Google Scholar]
  54. J. Sochman and J. Matas, “WaldBoost – learning for time constrained sequential detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005, pp. 150–156. [Google Scholar]
  55. B. Póczos, Y. Abbasi-Yadkori, Cs. Szepesvári, R. Greiner, and N. Sturtevant, “Learning when to stop thinking and do something!,” in Proceedings of the 26th International Conference on Machine Learning, 2009, pp. 825–832. [Google Scholar]
  56. M. Saberian and N. Vasconcelos, “Boosting classifier cascades,” in Advances in Neural Information Processing Systems 23. 2010, pp. 2047–2055, MIT Press. [Google Scholar]
  57. D. Benbouzid, R. Busa-Fekete, and B. Kégl, “Fast classification using sparse decision DAGs,” in International Conference on Machine Learning, June 2012, vol. 29. [Google Scholar]
  58. V. M. Abazov et al., “Observation of single top-quark production,” Physical Review Letters, vol. 103, no. 9, 2009. [Google Scholar]
  59. Aaltonen, T. et. al, “Observation of electroweak single top-quark production,” Phys. Rev. Lett., vol. 103, pp. 092002, Aug 2009. [CrossRef] [PubMed] [Google Scholar]
  60. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics,” The European Physical Journal C, vol. 71, pp. 1–19, 2011. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.