Open Access
EPJ Web of Conferences
Volume 55, 2013
SOS 2012 – IN2P3 School of Statistics
Article Number 02001
Number of page(s) 20
Section Multivariate Analysis Tools
Published online 01 July 2013
  1. C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.
  2. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
  3. N. Cristianini and J. Shawe-Taylor, Kernel methods for pattern recognition, Cambridge University Press, 2004.
  4. L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer, New York, 1996. [CrossRef]
  5. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, 2009. [CrossRef] [MathSciNet]
  6. K.P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, Cambridge, MA, 2012.
  7. Y. Freund and R.E. Schapire, Boosting: Foundations and Algorithms, MIT Press, Cambridge, MA, 2012.
  8. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995. [CrossRef]
  9. V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
  10. J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Journal of Machine Learning Research, 2012.
  11. Y. Bengio, “Gradient-based optimization of hyperparameters,” Neural Computation, vol. 12, no. 8, pp. 1889–1900, 2000. [CrossRef] [PubMed]
  12. C. E. Rasmussen and C. K. I. Williams, Processes for Machine Learning, MIT Press, 2006.
  13. Y. Bengio, A.C. Courville, and P. Vincent, “Unsupervised feature learning and deep learning: A review and new perspectives,” CoRR, vol. abs/1206.5538, 2012.
  14. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing (almost) from scratch,” Journal of Machine Learning Research, vol. 12, pp. 2493–2537, 2011.
  15. A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems. 2012, vol. 25, MIT Press.
  16. J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio, “Algorithms for hyperparameter optimization,” in Advances in Neural Information Processing Systems (NIPS). The MIT Press, 2011, vol. 24.
  17. J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of machine learning algorithms,” in Advances in Neural Information Processing Systems, 2012, vol. 25.
  18. C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: Automated selection and hyper-parameter optimization of classification algorithms,” Tech. Rep.,, 2012.
  19. R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, “Collaborative hyperparameter tuning,” in International Conference on Machine Learning (ICML), 2013.
  20. D. S. Johnson and F. P. Preparata, “The densest hemisphere problem,” Theoretical Computer Science, vol. 6, pp. 93–107, 1978. [CrossRef] [MathSciNet]
  21. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by backpropagating errors,” Nature, vol. 323, pp. 533–536, 1986. [NASA ADS] [CrossRef]
  22. B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers,” in Fifth Annual Workshop on Computational Learning Theory, 1992, pp. 144–152. [CrossRef]
  23. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.
  24. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol. 55, pp. 119–139, 1997. [CrossRef]
  25. P. Bartlett, “The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 525–536, 1998. [CrossRef]
  26. I. Nabney, Netlab: Algorithms for Pattern Recognition, Springer, 2002.
  27. L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in Advances in Neural Information Processing Systems, 2008, vol. 20, pp. 161–168.
  28. L. Mason, P. Bartlett, J. Baxter, and M. Frean, “Boosting algorithms as gradient descent,” in Advances in Neural Information Processing Systems. 2000, vol. 12, pp. 512–518, The MIT Press.
  29. L. Mason, P. Bartlett, and J. Baxter, “Improved generalization through explicit optimization of margins,” Machine Learning, vol. 38, no. 3, pp. 243–255, March 2000. [CrossRef]
  30. M. Collins, R.E. Schapire, and Y. Singer, “Logistic regression, AdaBoost and Bregman distances,” Machine Learning, vol. 48, pp. 253–285, 2002. [CrossRef]
  31. R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the margin: a new explanation for the effectiveness of voting methods,” Annals of Statistics, vol. 26, no. 5, pp. 1651–1686, 1998. [CrossRef] [MathSciNet]
  32. R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated predictions,” Machine Learning, vol. 37, no. 3, pp. 297–336, 1999. [CrossRef]
  33. P. Viola and M. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, pp. 137–154, 2004. [CrossRef]
  34. G. Dror, M. Boullé, I. Guyon, V. Lemaire, and D. Vogel, Eds., Proceedings of KDD-Cup 2009 competition, vol. 7 of JMLR Workshop and Conference Proceedings, 2009.
  35. Olivier Chapelle and Yi Chang, “Yahoo! Learning-to-Rank Challenge overview,” in Yahoo! Learning-to-Rank Challenge (JMLR W&CP), 2011, vol. 14, pp. 1–24.
  36. L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and Blum M., “reCAPTCHA: Human-based character recognition via web security measures,” Science, vol. 321, no. 5895, pp. 1465–1468, 2008. [CrossRef] [PubMed]
  37. L. Von Ahn and L. Dabbish, “Labeling images with a computer game,” in Conference on Human factors in computing systems (CHI04), 2004, pp. 319–326.
  38. L. Von Ahn, “Games with a purpose,” Computer, vol. 39, no. 6, 2006. [CrossRef]
  39. S. Roweis and Saul L. K., “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, pp. 2323–2326, 2000.
  40. J. B. Tenenbaum, V. de Silva, and Langford J. C., “A global geometric framework for nonlinear dimensionality reduction,” Science, vol. 290, pp. 2319–2323, 2000. [CrossRef] [PubMed]
  41. A. Beygelzimer, J. Langford, and B. Zadrozny, Performance Modeling and Engineering, chapter Machine Learning Techniques–Reductions Between Prediction Quality Metrics, Springer, 2008.
  42. J. Bennett and S. Lanning, “The Netflix prize,” in KDDCup 2007, 2007.
  43. N. Casagrande, D. Eck, and B. Kégl, “Geometry in sound: A speech/music audio classifier inspired by an image classifier,” in International Computer Music Conference, Sept. 2005, vol. 17.
  44. J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl, “Aggregate features and AdaBoost for music classification,” Machine Learning Journal, vol. 65, no. 2/3, pp. 473–484, 2006. [CrossRef]
  45. B. Kégl, R. Busa-Fekete, K. Louedec, R. Bardenet, X. Garrido, I.C. Mariş, D. Monnier-Ragaigne, S. Dagoret-Campagne, and M. Urban, “Reconstructing Nµ19(1000),” Tech. Rep. 2011-054, Auger Project Technical Note, 2011.
  46. Pierre Auger Collaboration, “Pierre Auger project design report,” Tech. Rep., Pierre Auger Observatory, 1997.
  47. R. Busa-Fekete, B. Kégl, T. Éltető, and Gy. Szarvas, “Ranking by calibrated AdaBoost,” in Yahoo! Ranking Challenge 2010 (JMLR workshop and conference proceedings), 2011, vol. 14, pp. 37–48.
  48. R. Busa-Fekete, B. Kégl, T. Éltető, and Gy. Szarvas, “A robust ranking methodology based on diverse calibration of AdaBoost,” in European Conference on Machine Learning, 2011, vol. 22, pp. 263–279.
  49. V. Gligorov and M. Williams, “Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree,” Tech. Rep., arXiv:1210.6861, 2012.
  50. Y. Takizawa, T. Ebisuzaki, Y. Kawasaki, M. Sato, M. E. Bertaina, H. Ohmori, Y. Takahashi, F. Kajino, M. Nagano, N. Sakaki, N. Inoue, H. Ikeda, Y. Arai, Y. Takahashi, T. Murakami, James H. Adams, and the JEM-EUSO Collaboration, “JEM-EUSO: Extreme Universe Space Observatory on JEM/ISS,” Nuclear Physics B - Proceedings Supplements, vol. 166, pp. 72–76, 2007. [CrossRef]
  51. V. Gligorov, “A single track HLT1 trigger,” Tech. Rep. LHCb-PUB-2011-003, CERN, 2011.
  52. L. Bourdev and J. Brandt, “Robust object detection via soft cascade,” in Conference on Computer Vision and Pattern Recognition. 2005, vol. 2, pp. 236–243, IEEE Computer Society.
  53. R. Xiao, L. Zhu, and H. J. Zhang, “Boosting chain learning for object detection,” in Ninth IEEE International Conference on Computer Vision, 2003, vol. 9, pp. 709–715. [CrossRef]
  54. J. Sochman and J. Matas, “WaldBoost – learning for time constrained sequential detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005, pp. 150–156.
  55. B. Póczos, Y. Abbasi-Yadkori, Cs. Szepesvári, R. Greiner, and N. Sturtevant, “Learning when to stop thinking and do something!,” in Proceedings of the 26th International Conference on Machine Learning, 2009, pp. 825–832.
  56. M. Saberian and N. Vasconcelos, “Boosting classifier cascades,” in Advances in Neural Information Processing Systems 23. 2010, pp. 2047–2055, MIT Press.
  57. D. Benbouzid, R. Busa-Fekete, and B. Kégl, “Fast classification using sparse decision DAGs,” in International Conference on Machine Learning, June 2012, vol. 29.
  58. V. M. Abazov et al., “Observation of single top-quark production,” Physical Review Letters, vol. 103, no. 9, 2009.
  59. Aaltonen, T. et. al, “Observation of electroweak single top-quark production,” Phys. Rev. Lett., vol. 103, pp. 092002, Aug 2009. [CrossRef] [PubMed]
  60. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics,” The European Physical Journal C, vol. 71, pp. 1–19, 2011. [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.