Open Access
Issue
EPJ Web of Conferences
Volume 55, 2013
SOS 2012 – IN2P3 School of Statistics
Article Number 02002
Number of page(s) 21
Section Multivariate Analysis Tools
DOI https://doi.org/10.1051/epjconf/20135502002
Published online 01 July 2013
  1. C. Andrieu, E. Moulines, and P. Priouret. Stability of stochastic approximation under verifiable conditions. SIAM Journal on Control and Optimization, 44:283–312, 2005. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Computing, 18:343–373, 2008. [CrossRef] [Google Scholar]
  3. Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society B, 2010. [Google Scholar]
  4. Y. Atchadé, G. Fort, E. Moulines, and P. Priouret. Bayesian Time Series Models, chapter Adaptive Markov chain Monte Carlo: Theory and Methods, pages 33–53. Cambridge Univ. Press, 2011. [Google Scholar]
  5. R. Bardenet. Towards adaptive learning and inference – Applications to hyperparameter tuning and astroparticle physics. PhD thesis, Université Paris-Sud, 2012. [Google Scholar]
  6. R. Bardenet and B. Kégl. An adaptive Monte Carlo Markov chain algorithm for inference from mixture signals. In Proceedings of ACAT’11, Journal of Physics: Conference series, 2012. [Google Scholar]
  7. A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo in practice. Springer, 2001. [CrossRef] [Google Scholar]
  8. H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, and Werner K. Parton-based Gribov-Regge theory. Physics Reports, 2001. [Google Scholar]
  9. P. Fearnhead and D. Prangle. Constructing summary statistics for approximate Bayesian computation: semi-automatic ABC. Journal of the Royal Statistical Society B, 2012. [Google Scholar]
  10. J. M. Flegal and G. L. Jones. Batch means and spectral variance estimators in Markov chain Monte Carlo. Annals of Statistics, 38(2):1034–1070, 2010. [CrossRef] [Google Scholar]
  11. W.R. Gilks, S. Richardson, and D. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice. Chapman & Hall, 1996. [Google Scholar]
  12. P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711–732, 1995. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. R. Grimmett and D. R. Stirzaker. Probability and random processes. Oxford science publications, second edition, 1992. [Google Scholar]
  14. H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli, 7:223–242, 2001. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw. CORSIKA: A Monte Carlo code to simulate extensive air showers. Technical report, Forschungszentrum Karlsruhe, 1998. [Google Scholar]
  16. S. F. Jarner and E. Hansen. Geometric ergodicity of Metropolis algorithms. Stochastic processes and their applications, 341–361, 1998. [Google Scholar]
  17. R. M. Neal. Handbook of Markov Chain Monte Carlo, chapter MCMC using Hamiltonian dynamics. Chapman & Hall / CRC Press, 2010. [Google Scholar]
  18. C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New York, 2004. [CrossRef] [Google Scholar]
  19. G. Roberts, A. Gelman, and W. Gilks. Weak convergence of optimal scaling of random walk Metropolis algorithms. The Annals of Applied Probability, 7:110–120, 1997. [CrossRef] [Google Scholar]
  20. G. O. Roberts and J. S. Rosenthal. Optimal scaling for various Metropolis-Hastings algorithms. Statistical Science, 16:351–367, 2001. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Roodaki. Signal decompositions using trans-dimensional Bayesian methods. PhD thesis, Supélec, 2012. [Google Scholar]
  22. D. S. Sivia and J. Skilling. Data Analysis: A Bayesian Tutorial. Oxford University press, second edition, 2006. [Google Scholar]
  23. A.D. Sokal. Monte Carlo methods in statistical mechanics: Foundations and new algorithms, 1996. Lecture notes at the Cargèse summer school. [Google Scholar]
  24. D. Wraith, M. Kilbinger, K. Benabed, O. Cappé, J.-F. Cardoso, G. Fort, S. Prunet, and C. P. Robert. Estimation of cosmological parameters using adaptive importance sampling. Phys. Rev. D, 80(2), 2009. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.