Open Access
Issue
EPJ Web of Conferences
Volume 55, 2013
SOS 2012 – IN2P3 School of Statistics
Article Number 03002
Number of page(s) 32
Section Application to Data Analyses
DOI https://doi.org/10.1051/epjconf/20135503002
Published online 01 July 2013
  1. Y. Vardi, L. A. Shepp, L. Kaufman, “A Statistical Model for Positron Emission Tomography”, Journal of the American Statistical Association, Vol. 80, No. 389 (Mar., 1985), pp. 8–20 [http://www.jstor.org/stable/2288030] [CrossRef]
  2. O. Helene, V. R. Vanin, Z. O. Guimaraes-Filho, C. Takiya, “Variances, covariances and artifacts in image deconvolution”, Nucl. Instr. Meth. A, 580 (2007) pp.1466–1473 [CrossRef]
  3. L. Evans, P. Bryant (editors), “LHC Machine”, 2008 JINST 3, S08001, doi:10.1088/1748-0221/3/08/S08001 [http://iopscience.iop.org/1748-0221/3/08/S08001] [CrossRef]
  4. the ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider”, JINST 3, 2008, S08003, doi:10.1088/1748-0221/3/08/S08003 [http://iopscience.iop.org/1748-0221/3/08/S08003] [CrossRef]
  5. V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak and L. L. Yang, “Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders”, JHEP 1009, 097 (2010) [arXiv:1003.5827 [hep-ph]]. [CrossRef]
  6. the ATLAS collaboration, “Measurement of the charge asymmetry in top quark pair production in pp collisions at √s = 7 TeV using the ATLAS detector”, Eur. Phys. J. C 72, 2039 (2012) [arXiv:1203.4211 [hep-ex]]. [CrossRef] [EDP Sciences]
  7. Computer generated image of the whole ATLAS detector, CERN-GE-0803012, Photograph: Joao Pequenao, [http://cds.cern.ch/record/1095924/]
  8. Figures produced by the D0 collaboration [9] available at http://www-d0. fnal.gov/Run2Physics/top /top_public_web_pages/top_feynman_diagrams.html
  9. The D0 experiment, http://www-d0.fnal.gov
  10. P C Hansen, “Numerical tools for analysis and solution of Fredholm integral equations of the first kind”, Inverse Problems 8 (1992) 849 doi:10.1088/0266-5611/8/6/005 [http://m.iopscience.iop.org/0266-5611/8/6/005?rel=sem&relno=7] [NASA ADS] [CrossRef]
  11. Volker Blobel, “Unfolding methods in high energy physics experiments”, Report DESY 84–118, 1984 (also in Proceedings of the 1984 CERN School of Computing, CERN 85-09, pp. 88–127; see also http://www.desy.de/ blobel/).
  12. J. Beringer et al. (Particle Data Group), “The Review of Particle Physics”, Phys. Rev. D86, 010001 (2012) [http://pdg.lbl.gov/]
  13. G. Cowan, “A survey of unfolding methods for particle physics”, Conf. Proc. C 0203181, 248 (2002).
  14. Statistics” (Revised by G. Cowan) in [12]
  15. L. Lyons, “Unfolding: Introduction”, in Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva Switzerland, 17-20 January 2011, edited by H.B.Prosper, L.Lyons, CERN-2011-006, pp. 225–228 [http://cds.cern.ch/record/1306523] and references to unfolding therein.
  16. I. P. Nedelkov, “Improper problems in Computation Physics”, Com. Phys. Comm. 4 (1972) 157 [CrossRef]
  17. S. Leach, “Singular Value Decomposition. A Primer”, [http://people.csail.mit.edu/hasinoff/320/SingularValueDecomposition.pdf], material from CSC320S: Introduction to Visual Computing course at MIT and references therein.
  18. A. G. Frodesen, O. Skjeggestad, H. Tofte, “Probability and Statistics in particle physics”, Hardcover: 501 pages, Publisher: Universitetsforlaget (September 1979), ISBN-10:8200019063, ISBN-13: 978-8200019060
  19. A. Hoecker, V. Kartvelishvili, “SVD Approach to data unfolding”, Nucl. Instr. Meth. A 372, 1996 (469) [CrossRef]
  20. A. Björck, “Least squares methods”, Handbook of Numerical Analysis, voI I. (1990) 465–652, ed P. G. Ciarlet and J. L. Lions (Amsterdam: Elsevier)
  21. V. Blobel, “Unfolding methods in Particle Physics”, in Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva Switzerland, 17-20 January 2011, edited by H.B.Prosper, L.Lyons, CERN-2011-006, pp. 240–251 [http://cds.cern.ch/record/1306523] and references to unfolding therein.
  22. See for instance H. M. Antia, “Numerical methods for scientists and Engineers”, Birkhäuser, 2nd edition, (2002)
  23. A. N. Tikhonov ,V. Y. Arsenin “Solutions of ill-Posed Problem” Wiley, New York, (1977)
  24. See for instance T. M. Apostol (June 1967), “Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra 1” (2nd ed.),Wiley, ISBN 978-0-471-00005-1
  25. C. E. Lawson and R. J. Hanson,“Solving Least Square Problems”, Prentice-Hall Inc., Englewood Cliffs, 1974.
  26. G. Zech “Regularization and error assignment to unfolded distributions”, in Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva Switzerland, 17-20 January 2011, edited by H.B.Prosper, L.Lyons, CERN-2011-006, pp. 252–259 [http://cds.cern.ch/record/1306523] and references to unfolding therein.
  27. H. N. M‘ulthei, B. Schorr, |em “On an iterative method for the unfolding of spectra”, Nucl. Instr. and Meth. A257 (1987) 371–377
  28. L. B. Lucy “An iterative technique for the rectification of observed distributions”, Astronomical Journal 79(6) (1974) 745 [NASA ADS] [CrossRef]
  29. See section 36.1.4. in Ref [14] and references therein.
  30. See the articles in reference 1 of [26], particularly [1] and [27].
  31. G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem” , Nucl. Instr. Meth. A 362 1995 (487) [CrossRef]
  32. G. D’Agostini, “ Improved Iterative Bayesian unfolding”, http://arxiv.org/abs/1010.0632
  33. J. H. Kuhn and G. Rodrigo, “Charge asymmetries of top quarks at hadron colliders revisited”, JHEP 1201, 063 (2012) [arXiv:1109.6830 [hep-ph]]. [CrossRef]
  34. C. Shannon “A mathematical Theory of Communication” Bell System Technical Journal 27 (3) 379–423
  35. J. E. Shore , “Relative Entropy, Probabilistic Inference and AI” , contribution to Proceedings of the First Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-85), Corvallis, Oregon, 1985, pp 43–47, AUAI Press [http://uai.sis.pitt.edu/papers/85/p43-shore.pdf]
  36. E. T. Jaynes, “Information Theory and Statistical Mechanics”, Phys. Rev. 106 (1957) 620 [NASA ADS] [CrossRef] [MathSciNet]
  37. M. Schmelling, “The method of reduced cross-entropy. A general approach to unfold probability distributions”, Nucl. Instr. Meth. A 340 (1994) 400–412 IN2P3 School Of Statistics, Autrans
  38. J. Skilling, “Quantified Maximum Entropy”, in Maximum Entropy and Bayesian Methods, Fundamental Theories of Physics, vol. 39, 1990, pp 341–350 and ed. P.F. Fougère (Kluwer, Dordrecht, Holland, 1990).
  39. H. P. Dembinski, M. Roth, “ARU - towards automatic unfolding of detector effects” in Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva Switzerland, 17-20 January 2011, edited by H.B.Prosper, L.Lyons, CERN-2011-006, pp. 285–291 [http://cds.cern.ch/record/1306523] and [http://aru.hepforge.org]
  40. C. de Boor, “A Practical Guide to Splines”, Springer Verlag (New York, Heidelberg, Berlin) (1978).
  41. R. Barlow, “Extended maximum Likelihood”, Nucl. Instrum. Meth. A297, 496 (1990) and references therein.
  42. G. Choudalakis, “Fully Bayesian Unfolding”, [arXiv:1201.4612[physics.data-an]]
  43. B. Malaescu, “An iterative, dynamically stabilized method of data unfolding”, [arXiv:0907.3791 [physics.data-an]]
  44. G. Aad et al. the ATLAS Collaboration,“Measurement of inclusive jet and dijet production in pp collisions at √s = 7 TeV using the ATLAS detector”, Phys. Rev. D 86, 014022 (2012) [arXiv:1112.6297 [hep-ex]]. [CrossRef]
  45. L. Lindemann, G. Zech, “Unfolding by Weighting Monte Carlo Events” , Nucl. Instr. Meth A 354 (1995) 516–521 [CrossRef]
  46. B. Aslan and G. Zech, “Statistical energy as a tool for binning-free, multivariate goodness- of-fit tests, two-sample comparison and unfolding”, Nucl. Instr. and Meth. A 537 (2005) 626 [CrossRef]
  47. M. Pivk, F. R. Le Diberder, “sPlot a statistical tool to unfold data distributions”, Nucl. Inst. Meth. A 555:356–369, (2005) [CrossRef]
  48. G. Cowan, “Statistics for HEP. Lecture 4:Unfolding”, CERN Academic Training Lectures, CERN, Geneva, Switzerland, 5th April 2012, [http://indico.cern.ch/conferenceDisplay.py?confId=173729]
  49. G. Bohm and G. Zech, “Introduction to Statistics and Data Analysis for Physicists”, Verlag Deutsches Elektronen-Synchrotron (2010) [http://www-library.desy.de/elbook.html]
  50. Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva Switzerland, 17-20 January 2011, edited by H.B.Prosper, L.Lyons, CERN-2011-006 [http://cds.cern.ch/record/1306523] and [http://indico.cern.ch/conferenceOtherViews.py?view=standard&confId=107747]
  51. The Unfolding Framework Project, [https://www.wiki.terascale.de/index.php/Unfolding_Framework_ Project] (accessed on 9th May 2013 ) with software and references therein.
  52. T. Adye, “Unfolding algorithms and tests using RooUnfold” in Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva Switzerland, 17-20 January 2011, edited by H.B.Prosper, L.Lyons, CERN-2011-006, pp. 313–318 [http://cds.cern.ch/record/1306523] and [http://hepunx.rl.ac.uk/ adye/software/unfold/RooUnfold.html]
  53. R. Brun and F. Rademakers, “ROOT - An Object Oriented Data Analysis Framework”, Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81–86. See also http://root.cern.ch/. [NASA ADS] [CrossRef]
  54. G. D’Agostini, “Probabillity and Statistics - Improved iterative Bayesian unfolding” [http://www.roma1.infn.it/~dagos/unf2_R.tgz] written using the R Framework [ 54]
  55. R Development Core Team (2009), x“R: A language and environment for statistical computing”, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, [http://www.rproject.org].
  56. V. Blobel, “Unfolding”, RUN program source files and Manual, [http://www.desy.de/~blobel/unfold.html]
  57. V. Kartvelishvili, “GURU”, [http://www.hep.lancs.ac.uk/guru.tar.gz]
  58. G. Hesketh, “Unfolding”, [ http://www-d0.fnal.gov/ ghesketh/unfolding/]
  59. H. P. Dembinski, M. Roth, “ARU development page”, [http://aru.hepforge.org]
  60. M. H. Kalos, P. A. Whitlock, “Monte Carlo Methods, Volume 1”, Wiley-VCH Publisher (John Wiley & Sons, Inc.), 2nd Edition, (2008)
  61. R. D. Cousins, V. L. Highland, “Incorporating systematic uncertainties into an upper limit” , Nucl. Instr. Meth. A.320 (1992) 331–335 [CrossRef]
  62. the ATLAS Collaboration, “Procedure for the LHC Higgs boson search combination in summer 2011”, ATL-PHYS-PUB-2011-011 [https://cds.cern.ch/record/1375842] and references therein.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.