Open Access
EPJ Web of Conferences
Volume 56, 2013
International Workshop NUCPERF 2012: Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plant and Radioactive Waste Storage and Disposal (RILEM Event TC 226-CNM and EFC Event 351)
Article Number 02003
Number of page(s) 10
Section Session 2: Physical, Chemical and Mechanical Behavior: Coupled Chemical and Mechanical Effect
Published online 11 July 2013
  1. Atkins, M. and Glasser, F. P. Application of portland cement-based materials to radioactive waste immobilization. Waste Management, 12, 2–3, (1992), 105-131. [CrossRef] [Google Scholar]
  2. Improved cement solidification of low and intermediate level radioactive waste. AIEA Technical Report Series No. 350, (1993). [Google Scholar]
  3. Ipatti, A. Solidification of ion-exchange resins with alkali-activated blast-furnace slag. Cement and Concrete Research, 22, 2-3, (1992), 281-286. [CrossRef] [Google Scholar]
  4. Panciatici, G., Belfiore, A. and Poggianti, M. Incorporation of spent ion exchange resins in cement with and without additives. Applied Radiation and Isotopes, 45, 3, (1994), 393-394. [CrossRef] [Google Scholar]
  5. Li, J. and Wang, J. Advances in cement solidification technology for waste radioactive ion exchange resins: A review. Journal of Hazardous Materials, 135, 1-3, (2006), 443-448. [CrossRef] [PubMed] [Google Scholar]
  6. Veazey, G. W. and Ames, R. L. Cement waste-form development for ion-exchange resins at the Rocky Flats Plant. LA--13226-MS; Other: ON: DE97005285; TRN: TRN: 97:002710, (1997). [Google Scholar]
  7. Morin, V., Garrault, S., Begarin, F. and Dubois-Brugger, I. The influence of an ion-exchange resin on the kinetics of hydration of tricalcium silicate. Cement and Concrete Research, 40, 10, (2010), 1459-1464. [CrossRef] [Google Scholar]
  8. Sun, Q., Li, J. and Wang, J. Solidification of borate radioactive resins using sulfoaluminate cement blending with zeolite. Nuclear Engineering and Design, 241, 12, (2011), 5308-5315. [CrossRef] [Google Scholar]
  9. Lebescop, P., Bouniol, P. and Jorda, M. Immobilization in cement of ion-exchange resins. Materials Research Soc, Pittsburgh, (1990). [Google Scholar]
  10. Tremillon, B. Les séparations par les résines échangeuses d'ion, (1965). [Google Scholar]
  11. Matsuda, M., Nishi, T., Chino, K. and Kikuchi, M. Solidification of Spent Ion-Exchange Resin Using New Cementitious Material .1. Swelling Pressure of Ion-Exchange Resin. Journal of Nuclear Science and Technology, 29, 9, (1992), 883-889. [CrossRef] [Google Scholar]
  12. Matsuda, M., Kikuchi, M. and Takashi, N. Conditioning of Spent Ion Exchange Resin Using High Performance Cement, (1993). [Google Scholar]
  13. Kikuchi, M., Matsuda, M., Nishi, T., Tsuchiya, H. and Izumida, T. Advanced solidification system using high performance cement. Proceedings of the Fifth International Conference on Radioactive Waste Management and Environmental Remediation. ICEM '95, 2, (1995), 1095-1098. [Google Scholar]
  14. Epimakhov, V. N. and Oleinik, M. S. Inclusion of radioactive ion-exchange resins in inorganic binders. Atomic Energy, 99, 3, (2005), 607-611. [CrossRef] [Google Scholar]
  15. Van Der Lee, J. Thermodynamic and mathematical conceps of CHESS. Technical Report LHM/RD/98/39, (1998). [Google Scholar]
  16. Robinson, R. A. The Activity Coefficient of Calcium Nitrate in Aqueous Solution at 25° from Isopiestic Vapor Pressure Measurements. Journal of the American Chemical Society, 62, 11 1940/11/01, (1940), 3130-3131. [CrossRef] [Google Scholar]
  17. MarcosArroyo, M. D. M., Khoshkbarchi, M. K. and Vera, J. H. Activity coefficients of sodium, potassium, and nitrate ions in aqueous solutions of NaNO3, KNO3, and NaNO3+KNO3 at 25 degrees C. Journal of Solution Chemistry, 25, 10, (1996), 983–1000. [CrossRef] [Google Scholar]
  18. Riemann, W. and Walton, H. F. Ion Exchange in Analytical Chemistry, Oxford, UK, (1970). [Google Scholar]
  19. Nkinamubanzi, P. C. and Aitcin, P. The use of slag in cement and concrete in a sustainable development perspective. In Proceedings of the ATILH n°40205, (2000). [Google Scholar]
  20. Kolani, B., Buffo-Lacarrière, L., Sellier, A., Escadeillas, G., Boutillon, L. and Linger, L. Hydration of slag-blended cements. Cement and Concrete Composites, 34, 9, (2012), 1009-1018. [CrossRef] [Google Scholar]
  21. Wang, X.-Y., Lee, H.-S., Park, K.-B., Kim, J.-J. and Golden, J. S. A multi-phase kinetic model to simulate hydration of slag–cement blends. Cement and Concrete Composites, 32, 6, (2010), 468-477. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.