Open Access
Issue
EPJ Web of Conferences
Volume 67, 2014
EFM13 – Experimental Fluid Mechanics 2013
Article Number 02056
Number of page(s) 5
Section Contributions
DOI https://doi.org/10.1051/epjconf/20146702056
Published online 25 March 2014
  1. B.L. Smith, A. Glezer, Phys. Fluids 10, 2281 (1998) [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Glezer, M. Amitay, Annu. Rev. Fluid Mech. 34, 503 (2002) [CrossRef] [Google Scholar]
  3. J.E. Cater, J. Soria, J. Fluid Mech. 472, 167 (2002) [CrossRef] [Google Scholar]
  4. Z. Trávníček, A. Fedorchenko, A.B. Wang, An enhancement of synthetic jets by means of an integrated valveless pump, in Proceedings of the Tenth Asian Congress of Fluid Mechanics (ACFMX), edited by J.J. Wijetunge (Peradeniya, 2004), pp. 535–540 [Google Scholar]
  5. Z. Trávníček, A. Fedorchenko, A.B. Wang, Sensor Actuat. A-Phys. 120, 232 (2005) [CrossRef] [Google Scholar]
  6. Z. Trávníček, T. Vít, V. Tesař, Phys. Fluids 18, 081701 (2006) [CrossRef] [Google Scholar]
  7. G. Hong, Sensor Actuat. A-Phys. 132, 607 (2006) [CrossRef] [Google Scholar]
  8. J. Dandois, E. Garnier, P. Sagaut, J. Fluid Mech. 574, 25 (2007) [CrossRef] [Google Scholar]
  9. D. You, P. Moin, J. Fluid Struct. 24, 1349 (2008) [CrossRef] [Google Scholar]
  10. B.L. Smith, A. Glezer, J. Fluid Mech. 458, 1 (2002) [CrossRef] [Google Scholar]
  11. M.B. Gillespie, M.S. thesis, Georgia Institute of Technology (1998) [Google Scholar]
  12. Z. Trávníček, V. Tesař, Int. J. Heat Mass Transfer 46, 3291 (2003) [CrossRef] [Google Scholar]
  13. Z. Trávníček, T. Vít, Hybrid synthetic jet intended for enhanced jet impingement heat/mass transfer, in 13th International Heat Transfer Conference IHTC-13 (Sydney, 2006), p. 12 [Google Scholar]
  14. Z. Trávníček, V. Tesař, J. Kordík, J. Visual. 11, 221 (2008) [CrossRef] [Google Scholar]
  15. E. Stemme, G. Stemme, Sensor Actuat. A-Phys. 39, 159 (1993) [CrossRef] [Google Scholar]
  16. T. Gerlach, H. Wurmus, Sensor Actuat. A-Phys. 50, 135 (1995) [CrossRef] [Google Scholar]
  17. A. Olsson, G. Stemme, E. Stemme, Sensor Actuat. APhys. 57, 137 (1996) [CrossRef] [Google Scholar]
  18. T. Gerlach, Sensor Actuat. A-Phys. 69, 181 (1998) [CrossRef] [Google Scholar]
  19. A. Olsson, O. Larsson, J. Holn, L. Lundbladh, O. Ohman, G. Stemme, Sensor Actuat. A-Phys. 64, 63 (1998) [CrossRef] [Google Scholar]
  20. C.J. Morris, F.K. Forster, J. Micromech. Microeng. 10, 459 (2000) [CrossRef] [Google Scholar]
  21. V. Tesař, C. Hung, W. Zimmerman, Sensor Actuat. A-Phys. 125, 159 (2006) [CrossRef] [Google Scholar]
  22. V. Tesař, Sensor Actuat. A-Phys. 138, 394 (2007) [CrossRef] [Google Scholar]
  23. V. Tesař, Z. Trávníček, J. Kordík, Z. Randa, Sensor Actuat. A-Phys. 138, 213 (2007) [CrossRef] [Google Scholar]
  24. G. Arwatz, I. Fono, A. Seifert, AIAA J. 46, 1107 (2008) [CrossRef] [Google Scholar]
  25. T. Persoons, A. McGuinn, D.B. Murray, Int. J. Heat Mass Transfer 54, 3900 (2011) [CrossRef] [Google Scholar]
  26. S.S. Hsu, J. Kordík, Z. Trávníček, A.B. Wang, J. Flow Visual. Image Proc. 19, 1 (2012) [CrossRef] [Google Scholar]
  27. J. Kordík, Z. Trávníček, Journal of Fluids Engineering 135, 101101 (2013) [CrossRef] [Google Scholar]
  28. V. Tesař, J. Kordík, Sensors and Actuators A: Physical 199, 391 (2013) [CrossRef] [Google Scholar]
  29. V. Tesař, J. Kordík, Sensors and Actuators A: Physical 199, 379 (2013) [CrossRef] [Google Scholar]
  30. R.L. Bradel, PhD Thesis, University of Washington, Washington (2000) [Google Scholar]
  31. F.K. Forster, B.E. Williams, Parametric design of fixedgeometry microvalves – the Tesser valve, in ASME International Mechanical Engineering Congress & Exposition, IMECE2002 (IMECE2002-33628, New Orleans, 2002), p. 7 [Google Scholar]
  32. A.R. Gamboa, C.J. Morris, F.K. Forster, J. Fluids Eng- Trans ASME 127, 339 (2005) [CrossRef] [Google Scholar]
  33. A.A. Kulkarni, V.V. Ranade, R. Rajeev, S.B. Koganti, Chem. Eng. Sci. 64, 1285 (2009) [CrossRef] [Google Scholar]
  34. V. Tesař, Pressure-Driven Microfluidics (Artech House Publishers, Norwood, 2007) [Google Scholar]
  35. V. Tesař, in Encyclopedia of Microfluidics and Nanofluidics, edited by D. Li (Springer Science + Business Media, New York, 2008), pp. 2131–2139 [Google Scholar]
  36. G.H. Priestman, J.R. Tippetts, Factors affecting the application of vortex diodes and throttles, in Proceedings of the Symposium Fluid Control and Measurement (FLUCOME), edited by M. Harada (Pergamon, Oxford, 1985), pp. 241–246 [Google Scholar]
  37. F. Haakh, J. of Hydraulic Res. 41, 53 (2003) [CrossRef] [Google Scholar]
  38. Z. Liu, Y. Deng, S. Lin, M. Xuan, Engineering Optimization 44, 1389 (2012) [CrossRef] [Google Scholar]
  39. Z. Trávníček, V. Tesař, J. Kordík, A.B. Wang, S.S. Hsu, Patent PV 2012-423 (2012) [Google Scholar]
  40. J. Kordík, PhD Thesis, Czech Technical University, Prague (2011) [Google Scholar]
  41. G.M. Di Cicca, G. Iuso, Fluid Dyn. Res. 39, 673 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.