Open Access
Issue
EPJ Web of Conferences
Volume 71, 2014
2nd International Conference on New Frontiers in Physics
Article Number 00062
Number of page(s) 10
DOI https://doi.org/10.1051/epjconf/20147100062
Published online 29 April 2014
  1. A. Letessier-Selvon for the Pierre Auger Collaboration, Highlights from the Pierre Auger Observatory, 33rd International Cosmic Ray Conference (ICRC 2013), Rio de Janeiro 2013. [Google Scholar]
  2. J.R.T. de Mello Neto for the Pierre Auger Collaboration, Measurements of cosmic rays at the highest energies with the Pierre Auger Observatory, arXiv:1309.1249 [Google Scholar]
  3. The Pierre Auger Observatory: Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013). [Google Scholar]
  4. T. Abu-Zayyad et al., Energy Spectrum of Ultra-High Energy Cosmic Rays Observed with the Telescope Array Using a Hybrid Technique, arXiv:1305.7273 [Google Scholar]
  5. K. Greisen, End to the Cosmic-Ray Spectrum? Phys.Rev.Lett. 16 (1966), 748. [NASA ADS] [CrossRef] [Google Scholar]
  6. G.T. Zatsepin and V.A. Kuz’min, Upper Limit on the Spectrum of Cosmic Rays, JETP Letters 4, 78 [Google Scholar]
  7. L. Gonzalez-Mestres, Superluminal Matter and High-Energy Cosmic Rays, arXiv:astro-ph/9606054 [Google Scholar]
  8. L. Gonzalez-Mestres, Physical and Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, contribution to the 28th International Conference on High Energy Physics, Warsaw 1996, arXiv:hep-ph/9610474, and references therein. [Google Scholar]
  9. L. Gonzalez-Mestres, Vacuum Structure, Lorentz Symmetry and Superluminal Particles, arXiv:physics/9704017 [Google Scholar]
  10. L. Gonzalez-Mestres, Absence of Greisen-Zatsepin-Kuzmin Cutoff and Stability of Unstable Particles at Very High Energy, as a consequence of Lorentz Symmetry Violation, Proceedings of the 25th International Cosmic Ray Conference, Potchefstroomse Universiteit 1997, Vol. 6, p. 113, SAO/NASA record. [Google Scholar]
  11. L. Gonzalez-Mestres, Lorentz Symmetry Violation and Acceleration in Relativistic Shocks, Proceedings of the Heidelberg 2000 International Symposium on High-Energy γ-Ray Astrophysics, AIP Conf.Proc. 558 (2001), 874, arXiv:astro-ph/0011182. [Google Scholar]
  12. L. Gonzalez-Mestres, Cosmic rays and tests of fundamental principles, CRIS 2010 Proceedings, Nucl. Phys. B, Proc. Suppl. 212-213 (2011), 26, and references therein. The arXiv.org version arXiv:1011.4889 includes a relevant Post Scriptum. [CrossRef] [Google Scholar]
  13. L. Gonzalez-Mestres, Pre-Big Bang, fundamental Physics and noncyclic cosmologies, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, mp_arc 13-18, and references therein. [Google Scholar]
  14. L. Gonzalez-Mestres, High-energy cosmic rays and tests of basic principles of Physics, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, mp_arc 13-19, and references therein. [Google Scholar]
  15. L. Gonzalez-Mestres, Superbradyons and some possible dark matter signatures, arXiv:0905.4146 [Google Scholar]
  16. L. Gonzalez-Mestres, Lorentz symmetry violation, dark matter and dark energy, Invisible Universe International Conference, Paris 2009, [Google Scholar]
  17. AIP Conf.Proc. 1241 (2010), 1207. The arXiv.org version arXiv:0912.0725 contains a relevant Post Scriptum. [Google Scholar]
  18. I.P. Lokhtin, A.K. Managadze and A.M. Snigirev, Ridge effect and alignment phenomenon, Physics of Atomic Nuclei 76 (2013), 602. [CrossRef] [Google Scholar]
  19. L. Gonzalez-Mestres, Lorentz violation, vacuum, cosmic rays, superbradyons and Pamir data, arXiv:astro-ph/1009.1853 [Google Scholar]
  20. L. Gonzalez-Mestres, Properties of a possible class of particles able to travel faster than light, Proceedings of the January 1995 Moriond Workshop, Ed. Frontières, arXiv:astro-ph/9505117 [Google Scholar]
  21. L. Gonzalez-Mestres, Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light Proceedings of the TAUP 1995 Conference, Nucl. Phys. Proc. Suppl. 48 (1996), 131, arXiv.org, arXiv:astro-ph/9601090 [CrossRef] [Google Scholar]
  22. L. Gonzalez-Mestres, Testing fundamental principles with high-energy cosmic rays, 2011 Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 (2011) 390, and references therein. [Google Scholar]
  23. See, for instance, S.K. Lamoreaux, Relativity: Testing times in space, Nature 416 (2002), 803, and references therein. [CrossRef] [PubMed] [Google Scholar]
  24. For more recent measurements, see for instance M.A. Hohensee et al., Limits on Violations of Lorentz Symmetry and the Einstein Equivalence Principle using Radio-Frequency Spectroscopy of Atomic Dysprosium, Phys. Rev. Lett. 111 (2013), 050401, arXiv:1303.2747 [CrossRef] [PubMed] [Google Scholar]
  25. L. Gonzalez-Mestres, Lorentz symmetry violation and the results of the AUGER experiment, arXiv:0802.2536 [Google Scholar]
  26. L. Gonzalez-Mestres, AUGER-HiRes results and models of Lorentz symmetry violation, CRIS 2008 Proceedings, Nucl. Phys. Proc. Suppl. 190 (2009), 191, arXiv:0902.0994, and references therein. [CrossRef] [Google Scholar]
  27. L. Gonzalez-Mestres, Pre-Big Bang, vacuum and noncyclic cosmologies, 2011 Europhysics Conference on High Energy Physics, PoS EPS-HEP2011 (2011) 479, and references therein. [Google Scholar]
  28. L. Gonzalez-Mestres, WMAP, Planck, cosmic rays and unconventional cosmologies, contribution to the Planck 2011 Conference, Paris, January 2011, arXiv:1110.6171. [Google Scholar]
  29. C. Kiefer, Conceptual Problems in Quantum Gravity and Quantum Cosmology, ISRN Math.Phys. 2013 (2013), 509316, arXiv:1401.3578 [CrossRef] [Google Scholar]
  30. A. Ashtekar, Loop Quantum Gravity and the The Planck Regime of Cosmology, arXiv:1303.4989 [Google Scholar]
  31. G. Amelino-Camelia et al., Relative locality: A deepening of the relativity principle, arXiv:1106.0313 [Google Scholar]
  32. L. Smolin, General relativity as the equation of state of spin foam, arXiv:1205.5529 [Google Scholar]
  33. L. Gonzalez-Mestres, Observing air showers from cosmic superluminal particles, Workshop on "Observing Giant Cosmic Ray Air Showers for > 10E20 eV Particles from Space", University of Maryland, November 1997, AIP Conf. Proc. 433, 418 (1998), arXiv:physics/9712049 [Google Scholar]
  34. Wilkinson Microwave Anisotropy Probe (WMAP), http://map.gsfc.nasa.gov/ [Google Scholar]
  35. Planck mission (European State Agency, ESA), http://sci.esa.int/sciencee/www/area/index.cfm?fareaid=17 [Google Scholar]
  36. Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results, arXiv:1303.5062 [Google Scholar]
  37. Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [Google Scholar]
  38. The Planck Collaboration, Planck 2013 results. XXIII. Isotropy and statistics of the CMB, arXiv:1303.5083 and references therein. [Google Scholar]
  39. L. Gonzalez-Mestres, Space, Time and Superluminal Particles, arXiv:physics/9702026 [Google Scholar]
  40. L. Gonzalez-Mestres, Spinorial space-time and privileged space direction (I), mp_arc 13-75, and references therein. [Google Scholar]
  41. L. Gonzalez-Mestres, Spinorial space-time and Friedmann-like equations (I), mp_arc 13-80, and references therein. [Google Scholar]
  42. L. Gonzalez-Mestres, Pre-Big Bang, space-time structure, asymptotic Universe, these Proceedings. [Google Scholar]
  43. L. Gonzalez-Mestres, Planck data, spinorial space-time and asymptotic Universe, mp_arc 13-33, and references therein. [Google Scholar]
  44. L. Gonzalez-Mestres, Deformed Lorentz Symmetry and High-Energy Astrophysics (I), ICRC 1999 Evening Workshop Session talk, arXiv:physics/0003080, and references therein. [Google Scholar]
  45. The OPERA collaboration, Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897v1 [Google Scholar]
  46. L. Gonzalez-Mestres, Comments on the recent result of the "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam", arXiv:1109.6308 [Google Scholar]
  47. L. Gonzalez-Mestres, Astrophysical consequences of the OPERA superluminal neutrino, arXiv:1109.6630 [Google Scholar]
  48. L. Gonzalez-Mestres, Lorentz Symmetry Violation and Superluminal Particles at Future Colliders EPS-HEP97, Jerusalem, August 1997, arXiv:physics/9708028, and references therein. [Google Scholar]
  49. L. Gonzalez-Mestres, Preon models, relativity, quantum mechanics and cosmology (I), arXiv:0908.4070 [Google Scholar]
  50. L. Gonzalez-Mestres, Physics Opportunities Above the Greisen-Zatsepin-Kuzmin Cutoff: Lorentz Symmetry Violation at the Planck Scale, Workshop on "Observing Giant Cosmic Ray Air Showers for > 10E20 eV Particles from Space", University of Maryland, November 1997, AIP Conf. Proc. 433, 148 (1998), arXiv:physics/9712047 [Google Scholar]
  51. ACME (Advanced Cold Molecule Electron EDM) Collaboration, Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (6168) (2014), 269, arXiv:1310.7534 [CrossRef] [PubMed] [Google Scholar]
  52. The Muon (g-2) Collaboration, G.W. Bennett et al., An Improved Limit on the Muon Electric Dipole Moment, Phys.Rev. D 80 (2009), 052008, arXiv:0811.1207 [Google Scholar]
  53. L. Gonzalez-Mestres, High-Energy Nuclear Physics with Lorentz Symmetry Violation, EPS-HEP97 Conference, Jerusalem August 1997, arXiv:nucl-th/9708028 [Google Scholar]
  54. L. Gonzalez-Mestres, Lorentz Symmetry Violation, Vacuum and Superluminal Particles International Conference on Relativistic Physics and some of its Applications, Athens, June 1997, in Open Questions in Relativistic Physics, Ed. F. Selleri, Apeiron 1998, arXiv:physics/9709006 [Google Scholar]
  55. A. De Rújula, R.C. Giles and R.L. Jaffe, Unconfined quarks and gluons, Pys.Rev. D17 (1978), 285. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.