Open Access
Issue
EPJ Web of Conferences
Volume 71, 2014
2nd International Conference on New Frontiers in Physics
Article Number 00063
Number of page(s) 11
DOI https://doi.org/10.1051/epjconf/20147100063
Published online 29 April 2014
  1. Wilkinson Microwave Anisotropy Probe (WMAP), http://map.gsfc.nasa.gov/ [Google Scholar]
  2. Planck mission (European State Agency, ESA), http://sci.esa.int/sciencee/www/area/index.cfm?fareaid=17 [Google Scholar]
  3. LUX Collaboration, First results from the LUX dark matter experiment at the Sanford Underground Research Facility, arXiv:1310.8214 [Google Scholar]
  4. ACME (Advanced Cold Molecule Electron EDM) Collaboration, Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (6168) (2014), 269, arXiv:1310.7534 [CrossRef] [PubMed] [Google Scholar]
  5. M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV, Phys. Rev. Lett. 110 (2013), 141102, http://www.ams02.org/ [CrossRef] [PubMed] [Google Scholar]
  6. See, for instance, V.C. Spanos, The Price of a Dark Matter Annihilation Interpretation of AMS-02 Data, arXiv:1312.7841 [Google Scholar]
  7. Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results, arXiv:1303.5062 [Google Scholar]
  8. Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [Google Scholar]
  9. L. Gonzalez-Mestres, Pre-Big Bang, fundamental Physics and noncyclic cosmologies, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, mp_arc 13-18, and references therein. [Google Scholar]
  10. L. Gonzalez-Mestres, Planck data, spinorial space-time and asymptotic Universe, mp_arc 13-33, and references therein. [Google Scholar]
  11. L. Gonzalez-Mestres, Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, Proceedings of the TAUP 1995 Conference, Nucl. Phys. Proc. Suppl. 48 (1996), 131, arXiv:astro-ph/9601090. [CrossRef] [Google Scholar]
  12. See, for instance, Abdus Salam, Gauge Unification of Fundamental Forces, Nobel lecture, December 8, 1979, and references therein. [Google Scholar]
  13. L. Gonzalez-Mestres, High-energy cosmic rays and tests of basic principles of Physics, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, mp_arc 13-19, and references therein. [Google Scholar]
  14. L. Gonzalez-Mestres, Ultra-high energy physics and standard basic principles, these Proceedings. [Google Scholar]
  15. L. Gonzalez-Mestres, Cosmic rays and tests of fundamental principles, CRIS 2010 Proceedings, Nucl. Phys. B, Proc. Suppl. 212-213 (2011), 26, and references therein. The arXiv.org version arXiv:1011.4889 includes a relevant Post Scriptum. [CrossRef] [Google Scholar]
  16. L. Gonzalez-Mestres, Vacuum Structure, Lorentz Symmetry and Superluminal Particles, arXiv:physics/9704017 [Google Scholar]
  17. L. Gonzalez-Mestres, Superbradyons and some possible dark matter signatures, arXiv:0905.4146 [Google Scholar]
  18. L. Gonzalez-Mestres, Spinorial space-time and Friedmann-like equations (I), mp_arc 13-80, and references therein. [Google Scholar]
  19. I. Steer [20, 21], emphasizes that Lundmark [22] first established observational evidence of the expansion of the Universe with the now standard speed/distance relation, while Lemaître [23] established the theoretical evidence and Hubble [24] provided observational proof. [Google Scholar]
  20. I. Steer, History: Who discovered Universe expansion?, Nature 490 (2012), 176. [CrossRef] [Google Scholar]
  21. I. Steer, New Facts From the First Galaxy Distance Estimates J. R. Astron. Soc. Can. 105 (2011), 18, SAO/NASA record. [Google Scholar]
  22. K. Lundmark, The determination of the curvature of space-time in de Sitter’s world, MNRAS 84 (1924), 747, SAO/NASA record. [Google Scholar]
  23. G. Lemaître, Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques, Ann. Soc. Sci. Brux. A 47 (1927), 49, SAO/NASA record. [Google Scholar]
  24. E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, PNAS 15 (1929), 168, http://www.pnas.org/content/15/3/168 [Google Scholar]
  25. K. Enqvist, Cosmological inflation, CERN Yellow Report CERN-2012-001, pp. 207–215, arXiv:1201.6164 [Google Scholar]
  26. S. Gorbunov and V. Rubakov, Introduction to the Theory of the Early Universe, World Scientific 2011. [Google Scholar]
  27. L. Gonzalez-Mestres, Lorentz symmetry violation, dark matter and dark energy, Proceedings of the Invisible Universe International Conference (Paris 2009), [Google Scholar]
  28. AIP Conf. Proc. 1241 (2010),120. The arXiv.org version arXiv:0912.0725 contains a relevant Post Scriptum. [Google Scholar]
  29. L. Gonzalez-Mestres, Physical and Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, contribution to the 28th International Conference on High Energy Physics, Warsaw 1996, arXiv:hep-ph/9610474, and references therein. [Google Scholar]
  30. L. Gonzalez-Mestres, Space, Time and Superluminal Particles, arXiv:physics/9702026 [Google Scholar]
  31. L. Gonzalez-Mestres, Spinorial space-time and privileged space direction (I), mp_arc 13-75, and references therein. [Google Scholar]
  32. The Planck Collaboration, Planck 2013 results. XXIII. Isotropy and statistics of the CMB, arXiv:1303.5083 and references therein. [Google Scholar]
  33. P.A.M. Dirac, The Quantum Theory of the Electron, Proc. R. Soc. Lond. A 117 (1928), 610, and subsequent papers. [Google Scholar]
  34. W. Pauli, Zur Quantenmechanik des magnetischen Elektrons, Zeitschrift für Physik 43 (1927), 601, and other papers by the same author. [Google Scholar]
  35. A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1915), 844. [Google Scholar]
  36. A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Annalen der Physik 354 (7) (1916), 769. [NASA ADS] [CrossRef] [Google Scholar]
  37. SDSS-III Collaboration, http://www.sdss3.org/ [Google Scholar]
  38. Lawrence Berkeley National Laboratory News Center, BOSS Measures the Universe to One-Percent Accuracy, January 8, 2014. [Google Scholar]
  39. L. Anderson et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples, arXiv:1312.4877 [Google Scholar]
  40. R. Tojeiro et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low redshift sample of Data Release 1, arXiv:1401.1768 [Google Scholar]
  41. L. Gonzalez-Mestres, Pre-Big Bang, vacuum and noncyclic cosmologies, 2011 Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 (2011) 479, and references therein. [Google Scholar]
  42. L. Gonzalez-Mestres, WMAP, Planck, cosmic rays and unconventional cosmologies, contribution to the Planck 2011 Conference, Paris, January 2011, arXiv:1110.6171. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.