Open Access
Issue
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 04029
Number of page(s) 5
Section Modeling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/20159404029
Published online 07 September 2015
  1. L. Freund, Crack propagation in an elastic solid subjected to general loading – I. Constant rate of extension, Journal of the Mechanics and Physics of Solids, 20(3), 129–140 (1972) [CrossRef] [Google Scholar]
  2. L. Freund, Crack propagation in an elastic solid subjected to general loading – II. Non-uniform rate of extension, Journal of the Mechanics and Physics of Solids, 20(3), 141–152 (1972) [CrossRef] [Google Scholar]
  3. W. Dilger, R. Koch, and R. Kowalczyk, Ductility of plain and confined concrete under different strain rates, ACI Journal Proceedings, 81(1), 73–81 (1984) [Google Scholar]
  4. N. Banthia, S. Mindess, and A. Bentur, Impact behaviour of concrete beams, Materials and Structures, 20(4), 293–302 (1987) [CrossRef] [Google Scholar]
  5. H.-W. Reinhardt, Concrete under Impact Loading, Tensile Strength and Bond, HERON, 27(3) (1982) [Google Scholar]
  6. P. Bischoff and S. Perry, Compressive behaviour of concrete at high strain rates, Materials and Structures, 24(6), 425–450 (1991) [CrossRef] [Google Scholar]
  7. J. Weerheijm, Concrete under impact tensile loading and lateral compression, TU Delft, the Netherlands (1992) [Google Scholar]
  8. J. Ožbolt and H.-W. Reinhardt, Rate dependent fracture of notched plain concrete beams, CONCREEP 7, 57–62 (2005) [Google Scholar]
  9. J. Ožbolt, K. K. Rah, and D. Meštrović, Influence of loading rate on concrete cone failure, International Journal of Fracture, 139(2), 239–252 (2006) [CrossRef] [Google Scholar]
  10. M. Larcher, Development of discrete cracks in concrete loaded by shock waves, International Journal of Impact Engineering, 36(5), 700–710 (2009) [CrossRef] [Google Scholar]
  11. R. R. Pedersen, Computational modelling of dynamic failure of cementitious materials, Delft University of Technology (2010) [Google Scholar]
  12. J. Ožbolt, A. Sharma, and H.-W. Reinhardt, Dynamic fracture of concrete-compact tension specimen, International Journal of Solids and Structures, 48(10), 1534–1543 (2011) [CrossRef] [Google Scholar]
  13. J. Ožbolt and A. Sharma, Numerical simulation of dynamic fracture of concrete through uniaxial tension and L-specimen, Engineering Fracture Mechanics, 85, 88–102 (2012) [CrossRef] [Google Scholar]
  14. B. İrhan, High velocity impact and fragmentation of concrete: Numerical simulation, Institut für Werkstoffe im Bauwesen der Universität Stuttgart (2014) [Google Scholar]
  15. J. Ožbolt, A. Sharma, B. İrhan, and E. Sola, Tensile Behavior of Concrete under High Loading Rates, International Journal of Impact Engineering, 69, 55–68 (2014) [CrossRef] [Google Scholar]
  16. J. Ožbolt, J. Bošnjak, and E. Sola, Dynamic Fracture of Concrete Compact Tension Specimen: Experimental and Numerical Study, International Journal of Solids and Structures, 50, 4270–4278, (2013) [CrossRef] [Google Scholar]
  17. N. Bede, J. Ožbolt, A. Sharma, and B. İrhan, Dynamic fracture of notched plain concrete beams: 3D finite element analysis, International Journal of Impact Engineering, 77, 176–188 (2015) [CrossRef] [Google Scholar]
  18. J. D. Cargile, Development of a constitutive model for numerical simulation of projectile penetration into brittle geomaterials, Technical Report SL-99-11, U.S. Army Engineer Research and Development Center, Vicksburg, MS (1999) [Google Scholar]
  19. F. C. Caner and Z. P. Bažant, Impact comminution of solids due to local kinetic energy of high shear strain rate: II-Microplane model and verification, Journal of the Mechanics and Physics of Solids, 64, 236–248 (2014) [CrossRef] [Google Scholar]
  20. A.O. Frank, M.D. Adley, K.T. Danielson, and H.S. McDevitt Jr, The high-rate brittle microplane concrete model: Part II: application to projectile perforation of concrete slabs, Computers and Concrete, 9(4), 311–325 (2012) [CrossRef] [Google Scholar]
  21. J. Ožbolt, Y. Li, and I. Kožar, Microplane model for concrete with relaxed kinematic constraint, International Journal of Solids and Structures, 38(16), 2683–2711 (2001) [CrossRef] [Google Scholar]
  22. Z.P. Bažant and P.C. Prat, Microplane model for brittle-plastic material: I. Theory, Journal of Engineering Mechanics, 114(10), 1672–1688 (1988) [CrossRef] [Google Scholar]
  23. H. Mihashi and F. Wittmann, Stochastic Approach to Study the Influence of Rate of Loading on Strength of Concrete, HERON, 25(3) (1980) [Google Scholar]
  24. A. S. Krausz and K. Krausz, Fracture kinetics of crack growth, Springer, 1 (1988) [Google Scholar]
  25. Z.P. Bažant et al., Large-strain generalization of microplane model for concrete and application, Journal of Engineering Mechanics, 126(9), 971–980 (2000) [CrossRef] [Google Scholar]
  26. Z.P. Bažant, F.C. Caner, M.D. Adley, and S.A. Akers, Fracturing rate effect and creep in microplane model for dynamics, Journal of Engineering Mechanics, 126(9), 962–970 (2000) [CrossRef] [Google Scholar]
  27. N.J. Carpenter, R.L. Taylor, and M.G. Katona, Lagrange constraints for transient finite element surface contact, International Journal for Numerical Methods in Engineering, 32(1), 103–128 (1991) [CrossRef] [Google Scholar]
  28. L. M. Taylor and D.P. Flanagan, PRONTO 3D: A three-dimensional transient solid dynamics program (1989) [Google Scholar]
  29. Z. P. Bažant and B. Oh, Crack band theory for fracture of concrete, Materials and Structures: 155–177 (1983) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.