Open Access
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 04028
Number of page(s) 4
Section Modeling and Numerical Simulation
Published online 07 September 2015
  1. Gurney R.W. The initial velocities of fragments from bombs, shell and grenades[R]. Army Ballistic Research Lab Aberdeen Proving Ground MD, 1943 [Google Scholar]
  2. Mott N.F. Fragmentation of shell cases. Proc Royal Soc Lond A (1947);189:300–8 [CrossRef] [Google Scholar]
  3. Taylor G.I. The fragmentation of tubular bombs. In: Scientific papers of G.I. Taylor, vol. III. Cambridge: Cambridge University Press; 1963. No. 44, pp. 387–390 [Google Scholar]
  4. Hoggatt R.H. , Recht R.F. Fracture behavior of tubular bombs. J. Appl. Phys. (1968); 39(2):1856–62 [Google Scholar]
  5. Singh M., Suneja H.R., Bola M.S., et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates. International journal of impact engineering (2002), 27(9): 939–954 [CrossRef] [Google Scholar]
  6. Tang T., Li Q., Sun X., Sun Z., Jin S. and Gu Y., Strain-rate effect of expanding fracture of 45 steel cylinder shells driven by detonation, Explsion and shock Waves (2006), 26(1):129–133 (in Chinese) [Google Scholar]
  7. Tang T., Gu Y., Li Q., et al. Expanding fracture of steel cylinder shell by detonation driving, Explsion and shock Waves (2003), 23(6): 529–533 (in Chinese) [Google Scholar]
  8. D.M. Goto*, R. Becker, T.J. Orzechowski, H.K. Springer, A.J. Sunwoo, C.K. Syn, Investigation of the fracture and fragmentation of explosively driven rings and cylinders, International Journal of Impact Engineering 35 (2008) 1547–11556 [CrossRef] [Google Scholar]
  9. C. Zener, J.H. Hollomon, Effects of strain rate upon plastic flow of steel. J. Appl. Phys. (1944) 15, 22–32 [Google Scholar]
  10. Y. Bai, B. Dodd. Adiabatic shear localization. Oxford: Pergamon press (1992) p. 24 [Google Scholar]
  11. V. F. Nestrenko. Shear localization and shear bands pattern in heterogeneous materials. In: Dynamics of Heterogeneous Materials, New York, (2001) p. 307–384 [CrossRef] [Google Scholar]
  12. Q. Xue, M.A. Meyes, V.F. Nestrenko. Self-organization of shear bands in stainless steel. Material Science and Engineening A (2004) 384, 35–46 [Google Scholar]
  13. V.F. Nestrenko, M.A. Meyes, T.W. Wright. Self-organization in the initiation of adiabatic shear bands. Acta materiallia (1997) 46, 327–340 [CrossRef] [Google Scholar]
  14. Hoggatt C.R., Recht R.F. Fracture behavior of tubular bombs[J]. Journal of Applied Physics (2003), 39(3): 1856–1862 [Google Scholar]
  15. R.C. Batra, C.H. Kim. Analysis of shear banding in twelve materials. Int. J. Plasticity (1992) 8, 425–452 [CrossRef] [Google Scholar]
  16. M. Zhou, A.J. Rosakis, G. Ravichandran. Dynamically propagating shear bands in impact-loaded pre-notched plates–1. Experimental investigations of temperature signaturesand propagation speed. J. Mech. Phys. Solids (1996) 44, 981–1006 [CrossRef] [Google Scholar]
  17. F. Zhou, T.W. Wright and K.T. Ramesh. A numerical methodology for investigating the formation of adiabatic shear bands, Journal of Mechanics and Physics of Solids (2006) 54, 904–926 [Google Scholar]
  18. N. Medyanika, W.K. Liua and S. Li. On criteria for dynamic adiabatic shear band propagation, Journal of the Mechanics and Physics of Solids (2007) 55, 1439–1461 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.