Open Access
EPJ Web of Conferences
Volume 114, 2016
EFM15 – Experimental Fluid Mechanics 2015
Article Number 02027
Number of page(s) 4
Section Contributions
Published online 28 March 2016
  1. I. Gursul, Vortex flows on UAVs: issues and challenges. Aeronautical Journal. 108(1090) 597–610 (2004) [CrossRef]
  2. M.S. Genç, Unsteady aerodynamics and flow-induced vibrations of a low aspect ratio rectangular membrane wing with excess length. Exp. Therm Fluid Sci. 44, 749–759 (2013) [CrossRef]
  3. P. Rojratsirikul, M.S. Genc, Z. Wang, I. Gursul, Flowinduced vibrations of low aspect ratio rectangular membrane wings. J Fluid Struct. 27, 1296–1309 (2011) [CrossRef]
  4. R. Ricci, S.A. Montelpare, Quantitative IR thermographic method to study the laminar separation bubble phenomenon. Int J Therm Sci. 44(8), 709–719 (2005) [CrossRef]
  5. W. Zhang, R. Hain, C.J. Kahler, Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil. Exp. Fluids. 45(4), 725–743 (2008) [CrossRef]
  6. M.S. Genc, U. Kaynak, G.D. Lock, Flow over an Aerofoil without and with Leading Edge Slat at a Transitional Reynolds Number. Proc IMechE, Part G: J Aerospace Eng. 223(3), 217–231 (2009) [CrossRef]
  7. M.S. Genc, Numerical Simulation of Flow over a Thin Aerofoil at High Re Number using a Transition Model. Proc IMechE, Part C-J Mech Eng Sci, 224(10), 2155–2164 (2010) [CrossRef]
  8. M.S. Genc, U. Kaynak, H. Yapıcı, Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction. Eur J Mech B-Fluid. 30(2), 218–235 (2011) [CrossRef]
  9. M.S. Genc, I. Karasu, H.H. Acıkel, An experimental study on aerodynamics of NACA2415 aerofoil at low Re numbers. Exp Therm Fluid Sci. 39, 252–264 (2012) [CrossRef]
  10. M.S. Genc, I. Karasu, H.H. Acıkel, M.T. Akpolat, Low Reynolds number flows and transition, in: M. Serdar Genc (Ed.), Low Reynolds Number Aerodynamics and Transition, Intech-Sciyo Publishing, ISBN 979-953-307-627-9 (2012) [CrossRef]
  11. I. Karasu, M. S. Genç, H. H. Açikel, Numerical study on low Reynolds number flows over an Aerofoil. J. Appl. Mech. Eng. 2, 131 (2013)
  12. M. Mizoguchi, H. Itoh, Effect of aspect ratio on aerodynamic characteristics at low Reynolds numbers. AIAA Journal. 51(7), 1631–1639 (2013) [CrossRef]
  13. M. Okamoto, A. Azuma, Aerodynamic Characteristics at Low Reynolds Numbers for Wings of Various Planforms. AIAA Journal. 49(6), 1135–1150 (2011) [CrossRef]
  14. G. E. Torres, T. J. Mueller, Low Aspect-Ratio Wing Aerodynamics at Low Reynolds Numbers. AIAA Journal. 42(5), 865–873 (2004) [CrossRef]
  15. R. Bleischwitz, R. de Kat, B. Ganapathisubramani, Effects of aspect ratio on fluid-structure interactions in membrane wings. 52nd AIAA Aerospace Science and Technology Forum and Exposition, National Harbor, Maryland, (2014)
  16. P.H. Cosyn, J. Vierendeels, Numerical Investigation of low aspect-ratio wings at low Reynolds Numbers. J. Aircraft. 43(3), 713–722 (2006) [CrossRef]
  17. S. Kaplan, A. Altman, M. Ol. Wake vorticity measurements for low aspect-ratio wings at low Reynolds Numbers. J. Aircraft. 44(1), 241–251 (2007) [CrossRef]
  18. E.V. Laitone, Wind tunnel tests of wings at Reynolds number below 70000. Exp. Fluids. 23(5), 405–409 (1997) [CrossRef]
  19. M. Shields, K. Mohseni, Experimental complications inherent to low Reynolds number wind tunnel testing. AIAA Paper. 2011-0873. Orlando, FL. January 2011.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.