Open Access
EPJ Web of Conferences
Volume 114, 2016
EFM15 – Experimental Fluid Mechanics 2015
Article Number 02030
Number of page(s) 6
Section Contributions
Published online 28 March 2016
  1. M.S. Genc, U. Kaynak, G.D. Lock, Flow over an Aerofoil without and with Leading Edge Slat at a Transitional Reynolds Number. Proc IMechE, Part G: J Aerospace Eng. 223(3), 217–231 (2009) [CrossRef] [Google Scholar]
  2. M.S. Genc, I. Karasu, H.H. Acıkel, M.T. Akpolat, Low Reynolds number flows and transition, in: M. Serdar Genc (Ed.), Low Reynolds Number Aerodynamics and Transition, Intech-Sciyo Publishing, ISBN 979-953-307-627-9 (2012) [CrossRef] [Google Scholar]
  3. M.S. Genc, U. Kaynak, H. Yapıcı, Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction. Eur J Mech B-Fluid. 30(2), 218–235 (2011) [CrossRef] [Google Scholar]
  4. M.S. Genc, I. Karasu, H.H. Acıkel, An experimental study on aerodynamics of NACA2415 aerofoil at low Re numbers. Exp Therm Fluid Sci. 39, 252–264 (2012) [CrossRef] [Google Scholar]
  5. I. Karasu, M. S. Genç, H. H. Açikel, Numerical study on low Reynolds number flows over an Aerofoil. J. Appl. Mech. Eng. 2, 131 (2013) [Google Scholar]
  6. W. Shyy, M. Berg, D. Ljungqvist, Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci. 35, 455–505 (1999) [CrossRef] [Google Scholar]
  7. M.S. Genç, Unsteady aerodynamics and flow-induced vibrations of a low aspect ratio rectangular membrane wing with excess length. Exp. Therm Fluid Sci. 44, 749–759 (2013) [CrossRef] [Google Scholar]
  8. P. Rojratsirikul, Z. Wang, I. Gursul, Effect of prestrain and excess length on unsteady fluid–structure interactions of membrane airfoils. J Fluid Struct. 26(3), 359–376 (2010) [CrossRef] [Google Scholar]
  9. P. Rojratsirikul, M.S. Genc, Z. Wang, I. Gursul, Flowinduced vibrations of low aspect ratio rectangular membrane wings. J Fluid Struct. 27, 1296–1309 (2011) [CrossRef] [Google Scholar]
  10. B. Béguin, C. Breitsamter, Effects of membrane prestress on the aerodynamic characteristics of an elastoflexible morphing wing. Aerosp. Sci. Technol. 37, 138–150 (2014) [CrossRef] [Google Scholar]
  11. S. Arbós-Torrent, B. Ganapathisubramani, R. Palacios, Leading-and trailing-edge effects on the aeromechanics of membrane aerofoils. J Fluid Struct. 38, 107–126 (2013) [CrossRef] [Google Scholar]
  12. R. Albertani, B. Stanford, J.P. Hubner, P.G. Ifju, Aerodynamic coefficients and deformation measurements on flexible micro air vehicle wings. Exp. Mech. 47(5), 625–635 (2007) [CrossRef] [Google Scholar]
  13. Y. Lian, W. Shyy, D. Viieru, B. Zhang, Membrane wing aerodynamics for micro air vehicles. Prog. Aerosp. Sci. 39(6), 425–465 (2003) [CrossRef] [Google Scholar]
  14. H. Aono, S.K. Chimakurthi, C.E. Cesnik, H. Liu, W. Shyy, Computational modeling of spanwise flexibility effects on flapping wing aerodynamics. In 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 18 (2009) [Google Scholar]
  15. C.H. Kuo, J.K. Hsieh, Unsteady flow structure and vorticity convection over the airfoil oscillating at high reduced frequency. Exp. Therm Fluid Sci. 24(3), 117–129 (2001) [CrossRef] [Google Scholar]
  16. M.J. Ringuette, M. Milano, M. Gharib, Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453–468 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.