Open Access
Issue
EPJ Web of Conferences
Volume 114, 2016
EFM15 – Experimental Fluid Mechanics 2015
Article Number 02029
Number of page(s) 5
Section Contributions
DOI https://doi.org/10.1051/epjconf/201611402029
Published online 28 March 2016
  1. S.J. Schreck, N.N. Sørensen, M.C. Robinson, Aerodynamic structures and processes in rotationally augmented flow fields. Wind Energy, 10(2), 159–178 (2007) [CrossRef] [Google Scholar]
  2. M.S. Genc, U. Kaynak, H. Yapıcı, Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction. Eur J Mech B-Fluid. 30(2), 218–235 (2011) [CrossRef] [Google Scholar]
  3. M.S. Genc, I. Karasu, H.H. Acıkel, M.T. Akpolat, Low Reynolds number flows and transition, in: M. Serdar Genc (Ed.), Low Reynolds Number Aerodynamics and Transition, Intech-Sciyo Publishing, ISBN 979-953-307-627-9 (2012) [CrossRef] [Google Scholar]
  4. M.S. Genc, U. Kaynak, G.D. Lock, Flow over an Aerofoil without and with Leading Edge Slat at a Transitional Reynolds Number. Proc IMechE, Part G: J Aerospace Eng. 223(3), 217–231 (2009) [CrossRef] [Google Scholar]
  5. M.S. Genç, Unsteady aerodynamics and flowinduced vibrations of a low aspect ratio rectangular membrane wing with excess length. Exp. Therm Fluid Sci. 44, 749–759 (2013) [CrossRef] [Google Scholar]
  6. P. Rojratsirikul, M.S. Genc, Z. Wang, I. Gursul, Flow-induced vibrations of low aspect ratio rectangular membrane wings. J Fluid Struct. 27, 1296–1309 (2011) [CrossRef] [Google Scholar]
  7. M.S. Genc, I. Karasu, H.H. Acıkel, An experimental study on aerodynamics of NACA2415 aerofoil at low Re numbers. Exp Therm Fluid Sci. 39, 252–264 (2012) [CrossRef] [Google Scholar]
  8. I. Karasu, M. S. Genç, H. H. Açikel, Numerical study on low Reynolds number flows over an Aerofoil. J. Appl. Mech. Eng. 2, 131 (2013) [Google Scholar]
  9. M.S. Genc, Numerical Simulation of Flow over a Thin Aerofoil at High Re Number using a Transition Model. Proc IMechE, Part C-J Mech Eng Sci, 224(10), 2155–2164 (2010) [CrossRef] [Google Scholar]
  10. White F.M. Fluid Mechanics, McGraw-Hill, Inc.4th edition (2004) [Google Scholar]
  11. Schlicting H. Boundary Layer Theory. McGraw-Hill, Inc. 4th edition (1979) [Google Scholar]
  12. J. Ketz, A. Plotkin, Low-speed aerodynamics: from wing theory to panel methods. McGraw-Hill, Incorporated (1991) [Google Scholar]
  13. B.H. Carmichael, Low Reynolds number airfoil survey. National Aeronautics and Space Administration, Langley Research Center (1981) [Google Scholar]
  14. R. Wahidi, W. Lai, J.P. Hubner, A. Lang. Volumetric three-component velocimetry and PIV measurements of Laminar Separation Bubbles on a NACA4412 Airfoil. 16th Int. Symp of Applications of Laser Techniques of Fluid Mechanics. Lisbon, Portugal. 09-12 July, (2012) [Google Scholar]
  15. M. O’meara, T.J. Mueller, Laminar separationbubble characteristics on an airfoil at low Reynolds numbers. AIAA journal, 25(8), 1033–1041 (1987) [CrossRef] [Google Scholar]
  16. M. Agrawal, G. Saxena, Analysis of wings using airfoil NACA4412 at different angle of attack. IJMER. 3, 1467–1469 (2013) [Google Scholar]
  17. I. Karasu, Experimental and numerical investigations of transition to turbulence and laminar separation bubble over aerofoil at low Reynolds number flows. Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Turkey (2011) [Google Scholar]
  18. www.dantecdynamics.com [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.