Open Access
Issue
EPJ Web of Conferences
Volume 114, 2016
EFM15 – Experimental Fluid Mechanics 2015
Article Number 02128
Number of page(s) 6
Section Contributions
DOI https://doi.org/10.1051/epjconf/201611402128
Published online 28 March 2016
  1. Raymer, D., Aircraft Design: A Conceptual Approach, Washington, DC: American Institute of Aeronautics and Astronautics, Inc., (2012) [CrossRef]
  2. Cover, A.B, Engine Response to Distorted Inflow Conditions, AGARD Report, (1986)
  3. Shin, H. J., Lee, J. S., Lee, K. H., Han, M. R., Hur, E. B., & Shin, S. C. Numerical and experimental investigation of conventional and un-conventional pre swirl duct for VLCC. International Journal of Naval Architecture and Ocean Engineering, 5 3, 414-430 (2013) [CrossRef]
  4. McRuer, D. T., Graham, D., and Ashkenas, I. Aircraft dynamics and automatic control. Princeton University Press. (2014)
  5. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., Effect of Wing Loading on Gross Takeoff Mass of a Hybrid Buoyant Aircraft, International Aerospace Engineering Conference, 27-28 August, 2015 – Vancouver, Canada (2015).
  6. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., Power-off static stability analysis of a clean configuration of a hybrid buoyant aircraft, 7th Ankara Internatıonal Aerospace Conference, METU, Ankara Turkey, 11-13 September (2015)
  7. Wallace, F. R., & Hein, J. N. U.S. Patent No. 5,238,207. Washington, DC: U.S. Patent and Trademark Office, (1993)
  8. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., Assessment of Engine’s Power Budget for Hydrogen Powered Hybrid Buoyant Aircraft, Journal of Propulsion and Power Research, Elesvier (in press), (2015)
  9. Nakamura, I., Meyer, C. G., & Sato, K. (2015). Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei. PloS one, 10(6).
  10. J. E. Harris, The role of the fins in the equilibrium of the swimming fish. I. Wind-tunnel tests on a model of Mustelus canis (Mitchill). Journal of Experimental Biology 13, 476-493, (1936)
  11. J. E. Harris, The mechanical significance of the position and movements of the paired fins in the Teleostei.Papers from Tortugas Laboratory 31, 173-189, (1973)
  12. J. E. Harris, 1938. The role of the fins in the equilibrium of the swimming fish. II. The role of the pelvic fins. Journal of Experimental Biology 15, 32-47, (1938)
  13. J. E. Harris, (1953). Fin patterns and mode of life in fishes. In S. M. Marshall and P. Orr (eds), Essays in Marine Biology, Oliver & Boyd, Edinburgh, (1953)
  14. P.W. Webb, (1975). Hydrodynamics and energetics of fish propulsion. Bulletin of the Fisheries Research Board of Canada 190 1-158, (1975)
  15. P. W. Webb, Simple physical principles and vertebrate aquatic locomotion. American Zoologist 28 709-725, (1988). [CrossRef]
  16. P. W. Webb, Designs for stability and maneuverability in aquatic vertebrates: What can we learn. In: Tenth International. Symp. Unmanned Untethered Submersible Tech.: Proc. Sp. Ses. Bio-Eng Res. Related to Autonomous Underwater Vehicles, Durham, NH, 85-108, (1997).
  17. P. W. Webb, Control of posture, depth, and swimming trajectories of fishes. Integrative and Comparative Biology 42 94-101, (2002). [CrossRef] [PubMed]
  18. P.W. Webb, and Keyes, R, Swimming kinematics of sharks. Fish. Bull. 80 803-812, (1982)
  19. D. Weihs, (1989). Design features and mechanics of axial locomotion in fish. American Zoologist 29:151-160. [CrossRef]
  20. D. Weihs, Stability of aquatic animal locomotion. Cont. Math. 141 443-461, (1993) [CrossRef]
  21. D. Weihs, (2002). Stability versus maneuverability in aquatic locomotion. Integrative and Comparative Biology Experimental Biology, 42 127-134, (2002)
  22. Burnside, W. D., & Marhefka, R. J. Antennas on aircraft, ships, or any large, complex environment. An Antenna handbook, Springer US, 1435-1534, (1988)
  23. Rebneb, B. H. S., Formulas for propellers in yaw and charts of the sede-force derivative, (1943)
  24. Seckel, E., & Morris, J. J., The Stability Derivatives of the Navion Aircraft Estimated by Various Methods and Derived from Flight Test Data (No. AMS-923). Princeton University, Dept. of Aerospace and mechanical sciences, (1971)
  25. Gudmundsson, S., General aviation aircraft design: Applied Methods and Procedures. Butterworth-Heinemann, (2013)
  26. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., A Novel Design of a Hybrid Buoyant Aircraft-A Potential Greener Solution for Inter Connectivity of Malaysian Islands”, AER0 15, 19-21 April, 2015, Monterial Canada, (2015)
  27. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., (2015) “Pugh Analysis for Configuration Selection of a Hybrid Buoyant Aircraft”, SAE 2015 AeroTech Congress & Exhibition, September 22-24, Seattle, Washington, USA, (2015)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.