Open Access
EPJ Web of Conferences
Volume 114, 2016
EFM15 – Experimental Fluid Mechanics 2015
Article Number 02128
Number of page(s) 6
Section Contributions
Published online 28 March 2016
  1. Raymer, D., Aircraft Design: A Conceptual Approach, Washington, DC: American Institute of Aeronautics and Astronautics, Inc., (2012) [CrossRef] [Google Scholar]
  2. Cover, A.B, Engine Response to Distorted Inflow Conditions, AGARD Report, (1986) [Google Scholar]
  3. Shin, H. J., Lee, J. S., Lee, K. H., Han, M. R., Hur, E. B., & Shin, S. C. Numerical and experimental investigation of conventional and un-conventional pre swirl duct for VLCC. International Journal of Naval Architecture and Ocean Engineering, 5 3, 414-430 (2013) [CrossRef] [Google Scholar]
  4. McRuer, D. T., Graham, D., and Ashkenas, I. Aircraft dynamics and automatic control. Princeton University Press. (2014) [Google Scholar]
  5. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., Effect of Wing Loading on Gross Takeoff Mass of a Hybrid Buoyant Aircraft, International Aerospace Engineering Conference, 27-28 August, 2015 – Vancouver, Canada (2015). [Google Scholar]
  6. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., Power-off static stability analysis of a clean configuration of a hybrid buoyant aircraft, 7th Ankara Internatıonal Aerospace Conference, METU, Ankara Turkey, 11-13 September (2015) [Google Scholar]
  7. Wallace, F. R., & Hein, J. N. U.S. Patent No. 5,238,207. Washington, DC: U.S. Patent and Trademark Office, (1993) [Google Scholar]
  8. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., Assessment of Engine’s Power Budget for Hydrogen Powered Hybrid Buoyant Aircraft, Journal of Propulsion and Power Research, Elesvier (in press), (2015) [Google Scholar]
  9. Nakamura, I., Meyer, C. G., & Sato, K. (2015). Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei. PloS one, 10(6). [Google Scholar]
  10. J. E. Harris, The role of the fins in the equilibrium of the swimming fish. I. Wind-tunnel tests on a model of Mustelus canis (Mitchill). Journal of Experimental Biology 13, 476-493, (1936) [Google Scholar]
  11. J. E. Harris, The mechanical significance of the position and movements of the paired fins in the Teleostei.Papers from Tortugas Laboratory 31, 173-189, (1973) [Google Scholar]
  12. J. E. Harris, 1938. The role of the fins in the equilibrium of the swimming fish. II. The role of the pelvic fins. Journal of Experimental Biology 15, 32-47, (1938) [Google Scholar]
  13. J. E. Harris, (1953). Fin patterns and mode of life in fishes. In S. M. Marshall and P. Orr (eds), Essays in Marine Biology, Oliver & Boyd, Edinburgh, (1953) [Google Scholar]
  14. P.W. Webb, (1975). Hydrodynamics and energetics of fish propulsion. Bulletin of the Fisheries Research Board of Canada 190 1-158, (1975) [Google Scholar]
  15. P. W. Webb, Simple physical principles and vertebrate aquatic locomotion. American Zoologist 28 709-725, (1988). [CrossRef] [Google Scholar]
  16. P. W. Webb, Designs for stability and maneuverability in aquatic vertebrates: What can we learn. In: Tenth International. Symp. Unmanned Untethered Submersible Tech.: Proc. Sp. Ses. Bio-Eng Res. Related to Autonomous Underwater Vehicles, Durham, NH, 85-108, (1997). [Google Scholar]
  17. P. W. Webb, Control of posture, depth, and swimming trajectories of fishes. Integrative and Comparative Biology 42 94-101, (2002). [Google Scholar]
  18. P.W. Webb, and Keyes, R, Swimming kinematics of sharks. Fish. Bull. 80 803-812, (1982) [Google Scholar]
  19. D. Weihs, (1989). Design features and mechanics of axial locomotion in fish. American Zoologist 29:151-160. [CrossRef] [Google Scholar]
  20. D. Weihs, Stability of aquatic animal locomotion. Cont. Math. 141 443-461, (1993) [CrossRef] [Google Scholar]
  21. D. Weihs, (2002). Stability versus maneuverability in aquatic locomotion. Integrative and Comparative Biology Experimental Biology, 42 127-134, (2002) [Google Scholar]
  22. Burnside, W. D., & Marhefka, R. J. Antennas on aircraft, ships, or any large, complex environment. An Antenna handbook, Springer US, 1435-1534, (1988) [Google Scholar]
  23. Rebneb, B. H. S., Formulas for propellers in yaw and charts of the sede-force derivative, (1943) [Google Scholar]
  24. Seckel, E., & Morris, J. J., The Stability Derivatives of the Navion Aircraft Estimated by Various Methods and Derived from Flight Test Data (No. AMS-923). Princeton University, Dept. of Aerospace and mechanical sciences, (1971) [Google Scholar]
  25. Gudmundsson, S., General aviation aircraft design: Applied Methods and Procedures. Butterworth-Heinemann, (2013) [Google Scholar]
  26. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., A Novel Design of a Hybrid Buoyant Aircraft-A Potential Greener Solution for Inter Connectivity of Malaysian Islands”, AER0 15, 19-21 April, 2015, Monterial Canada, (2015) [Google Scholar]
  27. Haque, A. U., Asrar, W., Omar, A. A., Sulaeman, E., and Ali, J. S. M., (2015) “Pugh Analysis for Configuration Selection of a Hybrid Buoyant Aircraft”, SAE 2015 AeroTech Congress & Exhibition, September 22-24, Seattle, Washington, USA, (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.