Open Access
Issue
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 02003
Number of page(s) 4
Section Advances in Lidar Technologies and Techniques I
DOI https://doi.org/10.1051/epjconf/201611902003
Published online 07 June 2016
  1. National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. The National Academies Press, Washington, DC. [Google Scholar]
  2. National Research Council, 2010: When Weather Matters: Science and Service to Meet Critical Societal Needs. The National Academies Press, Washington, DC. [Google Scholar]
  3. Goldsmith, J. E., Forest, M., Blair, H., Bisson, S. E., and Turner., D. D., 1998: Turn-Key Raman Lidar for Profiling AtmosphericWater Vapor, Clouds, and Aerosols. Applied Optics, 37(21), 4979–4990. [CrossRef] [PubMed] [Google Scholar]
  4. Turner, D. D., Ferrare, R. A., Brasseur, L. A. H., Feltz, W. F., and Tooman, T. P., 2002: Automated Retrievals ofWater Vapor and Aerosol Profiles from an Operational Raman Lidar. Journal of Atmospheric and Oceanic Technology, 19(1), 37–50. [CrossRef] [Google Scholar]
  5. Ertel, K., Linné, H., and Bösenberg, J., 2005: Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation. Applied Optics, 44, 5120–5126. [Google Scholar]
  6. Bösenberg, J. and Linné, H., 2006: Continuous Ground-Based Water Vapour Profiling using DIAL. In 23rd International Laser Radar Conference, pages 679–682, Nara City, Japan. [Google Scholar]
  7. Vogelmann, H. and Trickl, T., 2008: Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station. Applied Optics, 47, 2116-2132. [Google Scholar]
  8. Behrendt, A., Wulfmeyer, V., Riede, A., Wagner, G., Pal, S., Bauer, H., and Späth, F., 2010: Scanning differential absorption lidar for 3D observations of the atmospheric humidity field. In 25th International Laser Radar Conference, pages 1187–1190, St. Petersburg, Russia. [Google Scholar]
  9. Machol, J. L., Ayers, T., Schwenz, K. T., Koenig, K. W., Hardesty, R. M., Senff, C., Krainak, M. A., Abshire, J. B., Bravo, H. E., and Sandberg, S. P., 2004: Preliminary Measurements with an Automated Compact Differential Absorption Lidar for the Profiling of Water Vapor. Applied Optics, 43(15), 3110–3121. [CrossRef] [PubMed] [Google Scholar]
  10. Nehrir, A. R., Repasky, K. S., Carlsten, J. L., Obland, M. D., and Shaw, J. A., 2009: Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL). Journal of Atmospheric and Oceanic Technology, 26(4), 733–745. [CrossRef] [Google Scholar]
  11. Nehrir, A. R., Repasky, K. S., and Carlsten, J. L., 2012: Micropulse water vapor differential absorption lidar: transmitter design and performance. Optics express, 20(22), 25137–51. [CrossRef] [PubMed] [Google Scholar]
  12. Nehrir, A. R., Repasky, K. S., and Carlsten, J. L., 2011: Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) forWater Vapor Profiling in the Lower Troposphere. Journal of Atmospheric and Oceanic Technology, 28(2), 131–147. [CrossRef] [Google Scholar]
  13. Spuler, S. M., Repasky, K. S., Morley, B., Moen, D., Hayman, M., and Nehrir, A. R., 2015: Field deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmospheric Measurement Techniques, 8, 1073–1087. [CrossRef] [Google Scholar]
  14. Turner, D. D. and Löhnert, U., 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based atmospheric emitted radiance interferometer (AERI). Journal of Applied Meteorology and Climatology, 53(3), 752–771. [CrossRef] [Google Scholar]
  15. Knuteson, R., Revercomb, H., Best, F., Ciganovich, N., Dedecker, R., Dirkx, T., Ellington, S., Feltz, W., Garcia, R., Howell, H., Smith, W., Short, J., and Tobin, D., 2004: Atmospheric emitted radiance interferometer. part II: Instrument performance. Journal of Atmospheric and Oceanic Technology, 21, 1777–1789. [CrossRef] [Google Scholar]
  16. Knuteson, R., Revercomb, H., Best, F., Ciganovich, N., Dedecker, R., Dirkx, T. P., Ellington, S., Feltz, W., Garcia, R., Howell, H., Smith, W., Short, J., and Tobin, D., 2004: Atmospheric emitted radiance interferometer. Part I: Instrument Design. Journal of Atmospheric and Oceanic Technology, 21, 1763–1776. [CrossRef] [Google Scholar]
  17. Feltz, W., Smith, W., Howell, H., Knuteson, R., H., W., and Revercomb, H., 2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using the atmospheric emitted radiance interferometer (AERI). Journal of Applied Meteorology, 42, 584–597. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.