Open Access
Issue
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 23006
Number of page(s) 3
Section Poster Session (Aerosol Observations and Retrievals II)
DOI https://doi.org/10.1051/epjconf/201611923006
Published online 07 June 2016
  1. Marenco F., B.T. Johohnson, K.F. Turnbull, S. Newman, J.M. Haywoodod, H. Webster, and H. Ricketts: Airborne lidar or observations of the 2010 Eyjafjallajökull volcanic c ash plume, J. Geophys Res 116, D00U05, doi: 10.1029/2011JD016396, 2011. [Google Scholar]
  2. Omar, A. H., Winkeker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z.,Z., Hu, Y., Trepte, C. R., Rogers, R. R., Ferrare, R.R. A., Lee, K.-P., Kuehn, R. E., and Hostetler, C C. A.: The CALIPSO Automated Aerosol Classassification and 285 Lidar Ratio Selection Algorithithm, J. Atmos. Ocean. Technol., 26, 1994–2014, 2009. [Google Scholar]
  3. Baars, H., Ansmann, A., Althausen, D., Engelmann, R., Heese, B.,M¨uller, D., Artaxo, P., Paixao,M., Pauliquevis, T., and Souza, R.: Aerosol profiling with lidar in the Amazon Basin during the wet and dry season, J. Geophys. Res., 117, D21201, doi:10.1029/2012JD018338, 2012. [Google Scholar]
  4. Groß, S., Freudenthaler, V., Wiegner, M., Gasteiger, J., Geiß, A., and Schnell, F.: Dualwavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallaj¨okull plume over Maisach, Germany, Atmos. Environ., 48, 85–96, 2012. [Google Scholar]
  5. Lopes, F. J. S., Landulfo, E., and Vaughan, M. A.: Evaluating CALIPSO’s 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil, Atmos. Meas. Tech., 6, 3281–3299, 2013. [CrossRef] [Google Scholar]
  6. Marenco, F.: Nadir airborne lidar observations of deep aerosol layers, Atmos.Meas. Tech., 6, 2055–2064, 2013. [Google Scholar]
  7. Fernald, F. G.: Analysis of atmospheric lidar observations: some comments, Appl. Opt., 23, 652–653, 1984. [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Klett, J. D., Lidar inversion with variable backscatter/extinction ratios, Appl. Opt. 24, 1638–1643, 1985. [CrossRef] [PubMed] [Google Scholar]
  9. Bellouin, N., J. Rae, A. Jones, C. Johnson, J. Haywood, and O. Boucher, Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate, J. Geophys. Res., 116, D20206, doi:10.1029/2011JD016074, 2011. [CrossRef] [Google Scholar]
  10. Kaiser, J. W., et al.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527-554, 2012. [CrossRef] [Google Scholar]
  11. Morcrette J-J et al, Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: forward modeling. J Geophys Res 114, D06206. doi:10.1029/2008JD011235, 2009. [Google Scholar]
  12. Benedetti A et al, Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J Geophys Res 114, D13205. doi:10.1029/2008JD011115, 2009. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.