Open Access
Issue
EPJ Web Conf.
Volume 124, 2016
32èmes journées des Laboratoires Associés de Radiophysiques et de Dosimétrie, L.A.R.D. 2015
Article Number 00005
Number of page(s) 9
DOI https://doi.org/10.1051/epjconf/201612400005
Published online 21 September 2016
  1. R. Laurent, et al., “Respiratory lung motion using an artificial neural network.” Neural Computing and Applications 21.5, 929–934 (2012). [CrossRef] [Google Scholar]
  2. Eva M. Van Rikxoort, et al., “Automatic segmentation of pulmonary lobes robust against incomplete fissures.” Medical Imaging, IEEE Transactions on 29.6, 1286–1296 (2010). [CrossRef] [Google Scholar]
  3. Li Zhang, E. Hoffman and J.M. Reinhardt, “Atlas-driven lung lobe segmentation in volumetric X-ray CT images.” Medical Imaging, IEEE Transactions on 25.1, 1–16 (2006). [CrossRef] [Google Scholar]
  4. Jan-Martin Kuhnigk, et al., “Informatics in radiology (infoRAD): new tools for computer assistance in thoracic CT. Part 1. Functional analysis of lungs, lung lobes, and bronchopulmonary segments.” Radiographics: a review publication of the Radiological Society of North America, Inc 25.2, 525–536 (2004). [CrossRef] [Google Scholar]
  5. Soumik Ukil, and Joseph M. Reinhardt, “Anatomy-guided lung lobe segmentation in X-ray CT images.” Medical Imaging, IEEE Transactions on 28.2, 202–214 (2009). [CrossRef] [Google Scholar]
  6. James C. Ross, et al., “Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation.” Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010. Springer Berlin Heidelberg, 163–171 (2010). [Google Scholar]
  7. Bianca Lassen, et al., “Automatic segmentation of lung lobes in CT images based on fissures, vessels, and bronchi.” Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on. IEEE, (2010). [Google Scholar]
  8. Tom Doel, et al., “Pulmonary lobe segmentation from CT images using fissureness, airways, vessels and multilevel B-splines.” Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on. IEEE, (2012). [Google Scholar]
  9. Alain Tremeau, and Nathalie Borel, “A region growing and merging algorithm to color segmentation.” Pattern recognition 30.7, 1191–1203 (1997). [CrossRef] [Google Scholar]
  10. S.A. Hojjatoleslami, and Josef Kittler, “Region growing: a new approach.” IEEE Transactions on Image processing 7.7, 1079–1084 (1998). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.