Open Access
Issue
EPJ Web Conf.
Volume 124, 2016
32èmes journées des Laboratoires Associés de Radiophysiques et de Dosimétrie, L.A.R.D. 2015
Article Number 00006
Number of page(s) 10
DOI https://doi.org/10.1051/epjconf/201612400006
Published online 21 September 2016
  1. H. Castillo et al., Stress induction in the bacteria Shewanella oneidensis and Deinococcus radiodurans in response to below-background ionizing radiation, International Journal of Radiation Biology, 3002(October), 1–33 (2015) [Google Scholar]
  2. L. Satta, et al., Low environmental radiation background impairs biological defence of the yeast Saccharomyces cerevisiae to chemical radiomimetic agents, Mutation research, 347(3-4), 129–133 (1995) [CrossRef] [PubMed] [Google Scholar]
  3. L. Satta et al., Influence of a low background radiation environment on biochemical and biological responses in V79 cells, Radiation and environmental biophysics, 41 (3),217–224 (2002) [PubMed] [Google Scholar]
  4. E. Fratini et al., Low-radiation environment affects the development of protection mechanisms in V79 cells. Radiation and Environmental Biophysics, 54 (2),183–194 (2015) [CrossRef] [PubMed] [Google Scholar]
  5. M.C. Carbone et al., The Cosmic Silence experiment: on the putative adaptive role of environmental ionizing radiation, Radiation and Environmental Biophysics, 48(2), 189–196. (2009) [CrossRef] [PubMed] [Google Scholar]
  6. M. Tubiana,L.E. Feinendegen &J.M. Kaminski, The Linear No-Threshold Relationship Is Inconsistent with Radiation Biologic and Experimental Data, Radiology, 251(1) (2009) [CrossRef] [PubMed] [Google Scholar]
  7. L.E. Feinendegen, Evidence for beneficial low level radiation effects and radiation hormesis, British Journal of Radiology, 78(925), 3–7 (2005) [CrossRef] [Google Scholar]
  8. M.P. Little et al., Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do, Radiology, 251(1), 6–12 (2009) [CrossRef] [PubMed] [Google Scholar]
  9. A. Bettini, New underground laboratories: Europe, Asia and the Americas, Physics of the Dark Universe, 4, 36–40 (2014) [CrossRef] [Google Scholar]
  10. F. Piquemal, Modane underground laboratory: Status and project, The European Physical Journal Plus, 127(9), 110 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  11. V. Chazal et al., Neutron background measurements in the Underground Laboratory of Modane, Astroparticle Physics, 9(2), 163–172 (1998) [CrossRef] [Google Scholar]
  12. B. Schmidt et al.,. Muon-induced background in the EDELWEISS dark matter search, Astroparticle Physics, 44, 28–39 (2013) [CrossRef] [Google Scholar]
  13. E. Armengaud et al., Background studies for the EDELWEISS dark matter experiment, Astroparticle Physics, 47, 1–9 (2013) [CrossRef] [Google Scholar]
  14. S. Fiorucci et al., Identification of backgrounds in the EDELWEISS-I dark matter search experiment, Astroparticle Physics, 28(1), 143–153. (2007) [CrossRef] [Google Scholar]
  15. I. Savvidis et al., Underground low flux neutron background measurements in LSM using a large volume (1m3) spherical proportional counter, Journal of Physics: Conference Series, 203, p.012030. (2010) [CrossRef] [Google Scholar]
  16. B.C. Carlton, & B.J. Brown, Gene mutation. In P. Gerhardt, ed. Manual of methods for general bacteriology, Washington D.C.: American Society for Microbiology, pp. 222–242 (1981) [Google Scholar]
  17. D. Malczewski, J. Kisiel & J. Dorda, Gamma background measurements in the Laboratoire Souterrain de Modane, Journal of Radioanalytical and Nuclear Chemistry, 292(2), 751–756. (2012) [CrossRef] [PubMed] [Google Scholar]
  18. J. Allison et al., Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270–278 (2006) [NASA ADS] [CrossRef] [Google Scholar]
  19. J.A. Cameron & B. Singh, Nuclear Data Sheets for A=40, Nuclear Data Sheets, 102(2), 293–513 (2004) [CrossRef] [Google Scholar]
  20. D.R. Tilley et al., Energy Levels of Light Nuclei, Revised Manuscript, 40441(November) (2012) [Google Scholar]
  21. UNSCEAR, 2000. Annex B Exposures from natural radiation sources, United Nations Scientific Comittee on the Effects of Atomic Radiation, Annex B. [Google Scholar]
  22. A.Bouville & W.M. Lowder, Human Population Exposure to Cosmic Radiation. Radiat Prot Dosimetry, 24(1-4), 293–299 (1988) [Google Scholar]
  23. M.S. Gordon et al., Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground, IEEE Transactions on Nuclear Science, 51 (6),3427–3434 (2004) [Google Scholar]
  24. UNSCEAR, Sources and effects of ionizing radiation: Exposures of the public and workers from various sources of radiation (Vienna: United Nations Scientific Comittee on the Effects of Atomic Radiation, 2008). [Google Scholar]
  25. M.J. Daly, Death by protein damage in irradiated cells, DNA Repair, 11(1),12–21 (2012) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.