Open Access
Issue
EPJ Web Conf.
Volume 137, 2017
XIIth Quark Confinement and the Hadron Spectrum
Article Number 03001
Number of page(s) 10
Section Section A: Vacuum Structure and Confinement
DOI https://doi.org/10.1051/epjconf/201713703001
Published online 22 March 2017
  1. J.I. Skullerud, P.O. Bowman, A. Kizilersu, D.B. Leinweber, A.G. Williams, Nonperturbative structure of the quark gluon vertex, JHEP 04, 047 (2003), hep-ph/0303176 [CrossRef] [Google Scholar]
  2. H.W. Lin, Quark-gluon vertex with an off-shell O(a)-improved chiral fermion action, Phys. Rev. D 73, 094511 (2006), hep-lat/0510110 [CrossRef] [Google Scholar]
  3. A. Kizilersu, D.B. Leinweber, J.I. Skullerud, A.G. Williams, Quark-gluon vertex in general kinematics, Eur.Phys.J. C 50, 871 (2007), hep-lat/0610078 [CrossRef] [EDP Sciences] [Google Scholar]
  4. A. Cucchieri, A. Maas, T. Mendes, Three-point vertices in Landau-gauge Yang-Mills theory, Phys. Rev. D 77, 094510 (2008), 0803.1798 [CrossRef] [Google Scholar]
  5. A. Maas, Describing gauge bosons at zero and finite temperature, Phys.Rept. 524, 203 (2013), 1106.3942 [CrossRef] [MathSciNet] [Google Scholar]
  6. O. Oliveira, A. Kızılersu, P.J. Silva, J.I. Skullerud, A. Sternbeck, A.G. Williams, Lattice Landau gauge quark propagator and the quark-gluon vertex (2016), 1605.09632 [Google Scholar]
  7. A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J. Papavassiliou, J. Rodriguez-Quintero, S. Zafeiropoulos, On the zero crossing of the three-gluon vertex, Phys. Lett. B 761, 444 (2016), 1607.01278 [Google Scholar]
  8. A.G. Duarte, O. Oliveira, P.J. Silva, Further Evidence For Zero Crossing On The Three Gluon Vertex, Phys. Rev. D 94, 074502 (2016), 1607.03831 [CrossRef] [Google Scholar]
  9. P.H. Balduf, A. Sternbeck (2016), in preparation [Google Scholar]
  10. A.I. Davydychev, P. Osland, L. Saks, Quark gluon vertex in arbitrary gauge and dimension, Phys. Rev. D 63, 014022 (2001), hep-ph/0008171 [CrossRef] [Google Scholar]
  11. F.J. Llanes-Estrada, C.S. Fischer, R. Alkofer, Semiperturbative construction for the quark-gluon vertex, Nucl. Phys. Proc. Suppl. 152, 43 (2006), hep-ph/0407332 [CrossRef] [Google Scholar]
  12. M. Binger, S.J. Brodsky, The Form-factors of the gauge-invariant three-gluon vertex, Phys. Rev. D 74, 054016 (2006), hep-ph/0602199 [CrossRef] [Google Scholar]
  13. R. Alkofer, C.S. Fischer, F.J. Llanes-Estrada, K. Schwenzer, The quark-gluon vertex in Landau gauge QCD: Its role in dynamical chiral symmetry breaking and quark confinement, Annals Phys. 324, 106 (2009), 0804.3042 [CrossRef] [Google Scholar]
  14. R. Alkofer, M.Q. Huber, K. Schwenzer, Infrared Behavior of Three-Point Functions in Landau Gauge Yang-Mills Theory, Eur. Phys. J. C 62, 761 (2009), 0812.4045 [CrossRef] [EDP Sciences] [Google Scholar]
  15. D. Binosi, J. Papavassiliou, Gauge invariant Ansatz for a special three-gluon vertex, JHEP 03, 121 (2011), 1102.5662 [CrossRef] [Google Scholar]
  16. M. Hopfer, A. Windisch, R. Alkofer, The Quark-Gluon Vertex in Landau gauge QCD, PoS ConfinementX, 073 (2012), 1301.3672 [Google Scholar]
  17. A.C. Aguilar, D. Binosi, J.C. Cardona, J. Papavassiliou, Nonperturbative results on the quarkgluon vertex (2013), [PoSConfinementX, 103(2012)], 1301.4057 [Google Scholar]
  18. M. Pelaez, M. Tissier, N. Wschebor, Three-point correlation functions in Yang-Mills theory, Phys.Rev. D 88, 125003 (2013), 1310.2594 [CrossRef] [Google Scholar]
  19. N. Ahmadiniaz, C. Schubert, A covariant representation of the Ball-Chiu vertex, Nucl. Phys. B 869, 417 (2013), 1210.2331 [Google Scholar]
  20. A. Windisch, M. Hopfer, R. Alkofer, Towards a self-consistent solution of the Landau gauge quark-gluon vertex Dyson-Schwinger equation (2012), [Acta Phys. Polon. Supp. 6, 347 (2013)], 1210.8428 [CrossRef] [MathSciNet] [Google Scholar]
  21. M.Q. Huber, L. von Smekal, On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory, JHEP 1304, 149 (2013), 1211.6092 [CrossRef] [Google Scholar]
  22. A. Aguilar, D. Binosi, D. Ibáñez, J. Papavassiliou, Effects of divergent ghost loops on the Green’s functions of QCD, Phys.Rev. D 89, 085008 (2014), 1312.1212 [CrossRef] [Google Scholar]
  23. A. Blum, M.Q. Huber, M. Mitter, L. von Smekal, Gluonic three-point correlations in pure Landau gauge QCD, Phys. Rev. D 89, 061703(R) (2014), 1401.0713 [CrossRef] [Google Scholar]
  24. G. Eichmann, R. Williams, R. Alkofer, M. Vujinovic, The three-gluon vertex in Landau gauge, Phys.Rev. D 89, 105014 (2014), 1402.1365 [CrossRef] [Google Scholar]
  25. E. Rojas, J. de Melo, B. El-Bennich, O. Oliveira, T. Frederico, On the Quark-Gluon Vertex and Quark-Ghost Kernel: combining Lattice Simulations with Dyson-Schwinger equations, JHEP 1310, 193 (2013), 1306.3022 [CrossRef] [Google Scholar]
  26. A. Windisch (2014), Ph.D.Thesis, University of Graz [Google Scholar]
  27. J.A. Gracey, Off-shell two-loop QCD vertices, Phys. Rev. D 90, 025014 (2014), 1406.0649 [CrossRef] [Google Scholar]
  28. M. Hopfer (2014), Ph.D.Thesis, University of Graz [Google Scholar]
  29. R. Williams, The quark-gluon vertex in Landau gauge bound-state studies (2014), 1404.2545 [Google Scholar]
  30. A. Aguilar, D. Binosi, D. Ibáñez, J. Papavassiliou, New method for determining the quark-gluon vertex, Phys.Rev. D 90, 065027 (2014), 1405.3506 [CrossRef] [Google Scholar]
  31. M. Peláez, M. Tissier, N. Wschebor, Quark-gluon vertex from the Landau gauge Curci-Ferrari model (2015), 1504.05157 [Google Scholar]
  32. M. Mitter, J.M. Pawlowski, N. Strodthoff, Chiral symmetry breaking in continuum QCD, Phys.Rev. D 91, 054035 (2015), 1411.7978 [CrossRef] [MathSciNet] [Google Scholar]
  33. R. Williams, C.S. Fischer, W. Heupel, Light mesons in QCD and unquenching effects from the 3PI effective action, Phys. Rev. D 93, 034026 (2016), 1512.00455 [CrossRef] [Google Scholar]
  34. A.K. Cyrol, L. Fister, M. Mitter, J.M. Pawlowski, N. Strodthoff, Landau gauge Yang-Mills correlation functions, Phys. Rev. D 94, 054005 (2016), 1605.01856 [CrossRef] [Google Scholar]
  35. N. Ahmadiniaz, C. Schubert, QCD gluon vertices from the string-inspired formalism, Int. J. Mod. Phys. E 25, 1642004 (2016) [CrossRef] [Google Scholar]
  36. D. Binosi, L. Chang, J. Papavassiliou, S.X. Qin, C.D. Roberts, Natural constraints on the gluonquark vertex (2016), 1609.02568 [Google Scholar]
  37. A.C. Aguilar, J.C. Cardona, M.N. Ferreira, J. Papavassiliou, Non-Abelian Ball-Chiu vertex for arbitrary Euclidean momenta (2016), 1610.06158 [Google Scholar]
  38. M.Q. Huber, D.R. Campagnari, H. Reinhardt, Vertex functions of Coulomb gauge Yang–Mills theory, Phys.Rev. D 91, 025014 (2015), 1410.4766 [CrossRef] [Google Scholar]
  39. P. Vastag, H. Reinhardt, D. Campagnari, Improved variational approach to QCD in Coulomb gauge, Phys. Rev. D 93, 065003 (2016), 1512.06733 [CrossRef] [Google Scholar]
  40. D.R. Campagnari, E. Ebadati, H. Reinhardt, P. Vastag, Revised variational approach to QCD in Coulomb gauge, Phys. Rev. D 94, 074027 (2016), 1608.06820 [CrossRef] [Google Scholar]
  41. D.R. Campagnari, H. Reinhardt, M.Q. Huber, P. Vastag, E. Ebadati, Dyson–Schwinger Approach to Hamiltonian QCD (2016), 1610.06456 [Google Scholar]
  42. M.Q. Huber, Correlation functions of three-dimensional Yang-Mills theory from Dyson-Schwinger equations, Phys. Rev. D 93, 085033 (2016), 1602.02038 [CrossRef] [Google Scholar]
  43. A.L. Blum, R. Alkofer, M.Q. Huber, A. Windisch, Unquenching the three-gluon vertex: A status report, Acta Phys. Polon. Supp. 8, 321 (2015), 1506.04275 [CrossRef] [Google Scholar]
  44. D. Binosi, L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams, Comput.Phys.Commun. 161, 76 (2004), hep-ph/0309015 [CrossRef] [Google Scholar]
  45. C.S. Fischer, A. Maas, J.M. Pawlowski, On the infrared behavior of Landau gauge Yang-Mills theory, Annals Phys. 324, 2408 (2009), 0810.1987 [CrossRef] [Google Scholar]
  46. W. Schleifenbaum, A. Maas, J. Wambach, R. Alkofer, Infrared behaviour of the ghost-gluon vertex in Landau gauge Yang-Mills theory, Phys.Rev. D 72, 014017 (2005), hep-ph/0411052 [CrossRef] [Google Scholar]
  47. A.K. Cyrol, M.Q. Huber, L. von Smekal, A Dyson–Schwinger study of the four-gluon vertex, Eur.Phys.J. C 75, 102 (2015), 1408.5409 [CrossRef] [EDP Sciences] [Google Scholar]
  48. D. Binosi, D. Ibáñez, J. Papavassiliou, Nonperturbative study of the four gluon vertex, JHEP 1409, 059 (2014), 1407.3677 [CrossRef] [Google Scholar]
  49. M.Q. Huber, J. Braun, Algorithmic derivation of functional renormalization group equations and Dyson-Schwinger equations, Comput.Phys.Commun. 183, 1290 (2012), 1102.5307 [CrossRef] [Google Scholar]
  50. M.Q. Huber, M. Mitter, A CrasyDSE: Framework for solving Dyson-Schwinger equations, Comput. Phys.Commun. 183, 2441 (2012), 1112.5622 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.