Open Access
EPJ Web Conf.
Volume 137, 2017
XIIth Quark Confinement and the Hadron Spectrum
Article Number 03001
Number of page(s) 10
Section Section A: Vacuum Structure and Confinement
Published online 22 March 2017
  1. J.I. Skullerud, P.O. Bowman, A. Kizilersu, D.B. Leinweber, A.G. Williams, Nonperturbative structure of the quark gluon vertex, JHEP 04, 047 (2003), hep-ph/0303176 [CrossRef]
  2. H.W. Lin, Quark-gluon vertex with an off-shell O(a)-improved chiral fermion action, Phys. Rev. D 73, 094511 (2006), hep-lat/0510110 [CrossRef]
  3. A. Kizilersu, D.B. Leinweber, J.I. Skullerud, A.G. Williams, Quark-gluon vertex in general kinematics, Eur.Phys.J. C 50, 871 (2007), hep-lat/0610078 [CrossRef] [EDP Sciences]
  4. A. Cucchieri, A. Maas, T. Mendes, Three-point vertices in Landau-gauge Yang-Mills theory, Phys. Rev. D 77, 094510 (2008), 0803.1798 [CrossRef]
  5. A. Maas, Describing gauge bosons at zero and finite temperature, Phys.Rept. 524, 203 (2013), 1106.3942 [CrossRef] [MathSciNet]
  6. O. Oliveira, A. Kızılersu, P.J. Silva, J.I. Skullerud, A. Sternbeck, A.G. Williams, Lattice Landau gauge quark propagator and the quark-gluon vertex (2016), 1605.09632
  7. A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J. Papavassiliou, J. Rodriguez-Quintero, S. Zafeiropoulos, On the zero crossing of the three-gluon vertex, Phys. Lett. B 761, 444 (2016), 1607.01278
  8. A.G. Duarte, O. Oliveira, P.J. Silva, Further Evidence For Zero Crossing On The Three Gluon Vertex, Phys. Rev. D 94, 074502 (2016), 1607.03831 [CrossRef]
  9. P.H. Balduf, A. Sternbeck (2016), in preparation
  10. A.I. Davydychev, P. Osland, L. Saks, Quark gluon vertex in arbitrary gauge and dimension, Phys. Rev. D 63, 014022 (2001), hep-ph/0008171 [CrossRef]
  11. F.J. Llanes-Estrada, C.S. Fischer, R. Alkofer, Semiperturbative construction for the quark-gluon vertex, Nucl. Phys. Proc. Suppl. 152, 43 (2006), hep-ph/0407332 [CrossRef]
  12. M. Binger, S.J. Brodsky, The Form-factors of the gauge-invariant three-gluon vertex, Phys. Rev. D 74, 054016 (2006), hep-ph/0602199 [CrossRef]
  13. R. Alkofer, C.S. Fischer, F.J. Llanes-Estrada, K. Schwenzer, The quark-gluon vertex in Landau gauge QCD: Its role in dynamical chiral symmetry breaking and quark confinement, Annals Phys. 324, 106 (2009), 0804.3042 [CrossRef]
  14. R. Alkofer, M.Q. Huber, K. Schwenzer, Infrared Behavior of Three-Point Functions in Landau Gauge Yang-Mills Theory, Eur. Phys. J. C 62, 761 (2009), 0812.4045 [CrossRef] [EDP Sciences]
  15. D. Binosi, J. Papavassiliou, Gauge invariant Ansatz for a special three-gluon vertex, JHEP 03, 121 (2011), 1102.5662 [CrossRef]
  16. M. Hopfer, A. Windisch, R. Alkofer, The Quark-Gluon Vertex in Landau gauge QCD, PoS ConfinementX, 073 (2012), 1301.3672
  17. A.C. Aguilar, D. Binosi, J.C. Cardona, J. Papavassiliou, Nonperturbative results on the quarkgluon vertex (2013), [PoSConfinementX, 103(2012)], 1301.4057
  18. M. Pelaez, M. Tissier, N. Wschebor, Three-point correlation functions in Yang-Mills theory, Phys.Rev. D 88, 125003 (2013), 1310.2594 [CrossRef]
  19. N. Ahmadiniaz, C. Schubert, A covariant representation of the Ball-Chiu vertex, Nucl. Phys. B 869, 417 (2013), 1210.2331
  20. A. Windisch, M. Hopfer, R. Alkofer, Towards a self-consistent solution of the Landau gauge quark-gluon vertex Dyson-Schwinger equation (2012), [Acta Phys. Polon. Supp. 6, 347 (2013)], 1210.8428 [CrossRef] [MathSciNet]
  21. M.Q. Huber, L. von Smekal, On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory, JHEP 1304, 149 (2013), 1211.6092 [CrossRef]
  22. A. Aguilar, D. Binosi, D. Ibáñez, J. Papavassiliou, Effects of divergent ghost loops on the Green’s functions of QCD, Phys.Rev. D 89, 085008 (2014), 1312.1212 [CrossRef]
  23. A. Blum, M.Q. Huber, M. Mitter, L. von Smekal, Gluonic three-point correlations in pure Landau gauge QCD, Phys. Rev. D 89, 061703(R) (2014), 1401.0713 [CrossRef]
  24. G. Eichmann, R. Williams, R. Alkofer, M. Vujinovic, The three-gluon vertex in Landau gauge, Phys.Rev. D 89, 105014 (2014), 1402.1365 [CrossRef]
  25. E. Rojas, J. de Melo, B. El-Bennich, O. Oliveira, T. Frederico, On the Quark-Gluon Vertex and Quark-Ghost Kernel: combining Lattice Simulations with Dyson-Schwinger equations, JHEP 1310, 193 (2013), 1306.3022 [CrossRef]
  26. A. Windisch (2014), Ph.D.Thesis, University of Graz
  27. J.A. Gracey, Off-shell two-loop QCD vertices, Phys. Rev. D 90, 025014 (2014), 1406.0649 [CrossRef]
  28. M. Hopfer (2014), Ph.D.Thesis, University of Graz
  29. R. Williams, The quark-gluon vertex in Landau gauge bound-state studies (2014), 1404.2545
  30. A. Aguilar, D. Binosi, D. Ibáñez, J. Papavassiliou, New method for determining the quark-gluon vertex, Phys.Rev. D 90, 065027 (2014), 1405.3506 [CrossRef]
  31. M. Peláez, M. Tissier, N. Wschebor, Quark-gluon vertex from the Landau gauge Curci-Ferrari model (2015), 1504.05157
  32. M. Mitter, J.M. Pawlowski, N. Strodthoff, Chiral symmetry breaking in continuum QCD, Phys.Rev. D 91, 054035 (2015), 1411.7978 [CrossRef] [MathSciNet]
  33. R. Williams, C.S. Fischer, W. Heupel, Light mesons in QCD and unquenching effects from the 3PI effective action, Phys. Rev. D 93, 034026 (2016), 1512.00455 [CrossRef]
  34. A.K. Cyrol, L. Fister, M. Mitter, J.M. Pawlowski, N. Strodthoff, Landau gauge Yang-Mills correlation functions, Phys. Rev. D 94, 054005 (2016), 1605.01856 [CrossRef]
  35. N. Ahmadiniaz, C. Schubert, QCD gluon vertices from the string-inspired formalism, Int. J. Mod. Phys. E 25, 1642004 (2016) [CrossRef]
  36. D. Binosi, L. Chang, J. Papavassiliou, S.X. Qin, C.D. Roberts, Natural constraints on the gluonquark vertex (2016), 1609.02568
  37. A.C. Aguilar, J.C. Cardona, M.N. Ferreira, J. Papavassiliou, Non-Abelian Ball-Chiu vertex for arbitrary Euclidean momenta (2016), 1610.06158
  38. M.Q. Huber, D.R. Campagnari, H. Reinhardt, Vertex functions of Coulomb gauge Yang–Mills theory, Phys.Rev. D 91, 025014 (2015), 1410.4766 [CrossRef]
  39. P. Vastag, H. Reinhardt, D. Campagnari, Improved variational approach to QCD in Coulomb gauge, Phys. Rev. D 93, 065003 (2016), 1512.06733 [CrossRef]
  40. D.R. Campagnari, E. Ebadati, H. Reinhardt, P. Vastag, Revised variational approach to QCD in Coulomb gauge, Phys. Rev. D 94, 074027 (2016), 1608.06820 [CrossRef]
  41. D.R. Campagnari, H. Reinhardt, M.Q. Huber, P. Vastag, E. Ebadati, Dyson–Schwinger Approach to Hamiltonian QCD (2016), 1610.06456
  42. M.Q. Huber, Correlation functions of three-dimensional Yang-Mills theory from Dyson-Schwinger equations, Phys. Rev. D 93, 085033 (2016), 1602.02038 [CrossRef]
  43. A.L. Blum, R. Alkofer, M.Q. Huber, A. Windisch, Unquenching the three-gluon vertex: A status report, Acta Phys. Polon. Supp. 8, 321 (2015), 1506.04275 [CrossRef]
  44. D. Binosi, L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams, Comput.Phys.Commun. 161, 76 (2004), hep-ph/0309015 [CrossRef]
  45. C.S. Fischer, A. Maas, J.M. Pawlowski, On the infrared behavior of Landau gauge Yang-Mills theory, Annals Phys. 324, 2408 (2009), 0810.1987 [CrossRef]
  46. W. Schleifenbaum, A. Maas, J. Wambach, R. Alkofer, Infrared behaviour of the ghost-gluon vertex in Landau gauge Yang-Mills theory, Phys.Rev. D 72, 014017 (2005), hep-ph/0411052 [CrossRef]
  47. A.K. Cyrol, M.Q. Huber, L. von Smekal, A Dyson–Schwinger study of the four-gluon vertex, Eur.Phys.J. C 75, 102 (2015), 1408.5409 [CrossRef] [EDP Sciences]
  48. D. Binosi, D. Ibáñez, J. Papavassiliou, Nonperturbative study of the four gluon vertex, JHEP 1409, 059 (2014), 1407.3677 [CrossRef]
  49. M.Q. Huber, J. Braun, Algorithmic derivation of functional renormalization group equations and Dyson-Schwinger equations, Comput.Phys.Commun. 183, 1290 (2012), 1102.5307 [CrossRef]
  50. M.Q. Huber, M. Mitter, A CrasyDSE: Framework for solving Dyson-Schwinger equations, Comput. Phys.Commun. 183, 2441 (2012), 1112.5622 [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.