Open Access
Issue
EPJ Web Conf.
Volume 145, 2017
ISVHECRI 2016 – XIX International Symposium on Very High Energy Cosmic Ray Interactions
Article Number 18003
Number of page(s) 8
Section Final Session
DOI https://doi.org/10.1051/epjconf/201614518003
Published online 26 June 2017
  1. T. Pierog, These Proceedings
  2. O. Adriani et al. [PAMELA Collaboration], “PAMELA Measurements of Cosmic-ray Proton and Helium Spectra”, Science 332, 69 (2011) [arXiv:1103.4055 [astro-ph.HE]] [NASA ADS] [CrossRef] [PubMed]
  3. M. Aguilar et al. [AMS Collaboration], “Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station”, Phys. Rev. Lett. 114, 171103 (2015) [NASA ADS] [CrossRef] [PubMed]
  4. M. Aguilar et al. [AMS Collaboration], “Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station”, Phys. Rev. Lett. 115(21), 211101 (2015) [NASA ADS] [CrossRef] [PubMed]
  5. A. D. Panov et al., “Energy Spectra of Abundant Nuclei of Primary Cosmic Rays from the Data of ATIC-2 Experiment: Final Results”, Bull. Russ. Acad. Sci. Phys. 73, 564 (2009) [arXiv:1101.3246 [astro-ph.HE]] [NASA ADS] [CrossRef]
  6. H. S. Ahn et al., “Energy spectra of cosmic-ray nuclei at high energies”, Astrophys. J. 707, 593 (2009) [arXiv:0911.1889 [astro-ph.HE]]
  7. ThomasK.Gaisser, RalphEngel and ElisaResconi, Cosmic Rays and Particle Physics (Cambridge University Press, 2016)
  8. G. Di Sciascio, this conference
  9. L. Kuzmichev, this conference
  10. B. Bartoli et al. [ARGO-YBJ and LHAASO Collaborations], “Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO”, Phys. Rev. D 92(9), 092005 (2015) [arXiv:1502.03164 [astro-ph.HE]] [CrossRef]
  11. T. Antoni et al. [KASCADE Collaboration], “KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems”, Astropart. Phys. 24, 1 (2005) [astro-ph/0505413] [NASA ADS] [CrossRef]
  12. A. Haungs, this conference
  13. J. R. Hoerandel, “On the knee in the energy spectrum of cosmic rays”, Astropart. Phys. 19, 193 (2003) [astro-ph/0210453] [NASA ADS] [CrossRef]
  14. T. K. Gaisser, “Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio”, Astropart. Phys. 35, 801 (2012) [arXiv:1111.6675 [textttastro-ph.HE]] [CrossRef]
  15. M. G. Aartsen et al. [IceCube Collaboration], “The IceCube Neutrino Observatory – Contributions to ICRC 2015 Part III: Cosmic Rays”, arXiv:1510.05225 [astro-ph.HE], pp. 37-44
  16. W. D. Apel et al., “The spectrum of high-energy cosmic rays measured with KASCADE-Grande”, Astropart. Phys. 36, 183 (2012) [CrossRef]
  17. V. V. Prosin, this conference
  18. V. V. Prosin et al., “Tunka-133: Results of 3 year operation”, Nucl. Instrum. Meth. A 756, 94 (2014) [CrossRef]
  19. H. Dembinski, this conference
  20. M. G. Aartsen et al. [IceCube Collaboration], “Measurement of the cosmic ray energy spectrum with IceTop-73”, Phys. Rev. D 88(4), 042004 (2013) [arXiv:1307.3795 [astro-ph.HE]] [NASA ADS] [CrossRef]
  21. W. D. Apel et al., “Ankle-like Feature in the Energy Spectrum of Light Elements of Cosmic Rays Observed with KASCADE-Grande”, Phys. Rev. D 87, 081101 (2013) [arXiv:1304.7114 [astro-ph.HE]] [NASA ADS] [CrossRef]
  22. J. Matthews, this conference
  23. D. Martello, this conference
  24. K. Greisen, “End to the cosmic ray spectrum?”, Phys. Rev. Lett. 16, 748 (1966)
  25. G.T. Zatsepin and V.A. Kuzmin, “Upper limit of the spectrum of cosmic rays”, JETP Lett. 4, 78 (1966) [Pisma Zh. Eksp. Teor. Fiz. 4, 114 (1966)]
  26. A. M. Hillas, “The Origin of Ultrahigh-Energy Cosmic Rays”, Ann. Rev. Astron. Astrophys. 22, 425 (1984) [NASA ADS] [CrossRef]
  27. A. di Matteo et al. in “The Pierre Auger observatory: Contributions to the 34th international Cosmic aAy Conference (ICRC 2015)”, (arXiv:1509.03732) p. 103–110
  28. R. U. Abbasi et al. [Telescope Array Collaboration], “Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment”, Astrophys. J. 790, L21 (2014) [arXiv:1404.5890 [astro-ph.HE]]
  29. A. Aab et al. [Pierre Auger Collaboration], “The Pierre Auger Observatory Upgrade - Preliminary Design Report”, arXiv:1604.03637 [astro-ph.IM]
  30. K. H. Kampert and M. Unger, “Measurements of the Cosmic Ray Composition with Air Shower Experiments”, Astropart. Phys. 35, 660 (2012) [arXiv:1201.0018 [astro-ph.HE]] [NASA ADS] [CrossRef]
  31. K. Rawlins [IceCube Collaboration], J. Phys. Conf. Ser. 718(5), 052033 (2016). doi: 10.1088/1742-6596/718/5/052033
  32. E. J. Ahn, R. Engel, T. K. Gaisser, P. Lipari, T. Stanev, “Cosmic ray interaction event generator SIBYLL 2.1”, Phys. Rev. D 80, 094003 (2009) [arXiv:0906.4113 [hep-ph]] [CrossRef]
  33. V. Ptuskin, this conference
  34. T. Hams et al., “Elemental Abundances of Ultra-Heavy GCRs measured by SuperTIGER and ACE-CRIS and the Origin of Galactic Cosmic Rays”, PoS ICRC 2015, 038 (2016)
  35. P. Blasi and E. Amato, “Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition”, JCAP 1201, 010 (2012) [arXiv:1105.4521 [astro-ph.HE]] [NASA ADS] [CrossRef]
  36. P. Blasi and E. Amato, “Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy”, JCAP 1201, 011 (2012) [arXiv:1105.4529 [astro-ph.HE]] [CrossRef]
  37. M. G. Aartsen et al. [IceCube Collaboration], “The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors”, arXiv:1510.05223 [astro-ph.HE]
  38. M. G. Aartsen et al. [IceCube Collaboration], “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data”, Phys. Rev. Lett. 113, 101101 (2014) [arXiv:1405.5303 [astro-ph.HE]] [NASA ADS] [CrossRef] [PubMed]
  39. S. Schonert, T. K. Gaisser, E. Resconi and O. Schulz, “Vetoing atmospheric neutrinos in a high energy neutrino telescope”, Phys. Rev. D 79, 043009 (2009) [arXiv:0812.4308 [astro-ph]] [CrossRef]
  40. T. K. Gaisser, K. Jero, A. Karle, J. van Santen, “Generalized self-veto probability for atmospheric neutrinos”, Phys. Rev. D 90(2), 023009 (2014) [arXiv:1405.0525 [astro-ph.HE]] [CrossRef]
  41. M. G. Aartsen et al. [IceCube Collaboration], “Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube”, Phys. Rev. D 91(2), 022001 (2015) [arXiv:1410.1749 [astro-ph.HE]] [NASA ADS] [CrossRef]
  42. M. G. Aartsen et al. [IceCube Collaboration], “Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data”, Astrophys. J. 833(1), 3 (2016) [arXiv:1607.08006 [astro-ph.HE]]
  43. M. G. Aartsen et al. [IceCube Collaboration], “A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube”, Astrophys. J. 809(1), 98 (2015) [arXiv:1507.03991 [astro-ph.HE]]
  44. E. Waxman, J. N. Bahcall, “High-energy neutrinos from astrophysical sources: An Upper bound”, Phys. Rev. D 59, 023002 (1999) [hep-ph/9807282] [NASA ADS] [CrossRef]
  45. J. N. Bahcall, E. Waxman, “High-energy astrophysical neutrinos: The Upper bound is robust”, Phys. Rev. D 64, 023002 (2001) [hep-ph/9902383] [NASA ADS] [CrossRef]
  46. M. G. Aartsen et al. [IceCube Collaboration], “Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube”, Phys. Rev. Lett. 117(24), 241101 (2016) [arXiv:1607.05886 [astro-ph.HE]] [CrossRef] [PubMed]
  47. M. G. Aartsen et al. [IceCube Collaboration], “All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data”, Astrophys. J. 835(2), 151 (2017) [arXiv:1609.04981 [astro-ph.HE]]
  48. P. Lipari, “Proton and Neutrino Extragalactic Astronomy”, Phys. Rev. D 78, 083011 (2008) [arXiv:0808.0344 [astro-ph]] [CrossRef]
  49. M. Ahlers and F. Halzen, “Pinpointing Extragalactic Neutrino Sources in Light of Recent IceCube Observations”, Phys. Rev. D 90(4), 043005 (2014) [arXiv:1406.2160 [astro-ph.HE]] [NASA ADS] [CrossRef]
  50. K. Murase, E. Waxman, “Constraining High-Energy Cosmic Neutrino Sources: Implications and Prospects”, Phys. Rev. D 94(10), 103006 (2016) [arXiv:1607.01601 [astro-ph.HE]] [NASA ADS] [CrossRef]
  51. M. Kowalski, “Status of High-Energy Neutrino Astronomy”, J. Phys. Conf. Ser. 632(1), 012039 (2015) [arXiv:1411.4385 [astro-ph.HE]]
  52. M. G. Aartsen et al. [IceCube Collaboration], “The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux”, Astrophys. J. 835(1), 45 (2017) [arXiv:1611.03874 [astro-ph.HE]]
  53. M. G. Aartsen et al. [IceCube Collaboration], “An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory”, Astrophys. J. 824(2), 115 (2016) [arXiv:1601.06484 [astro-ph.HE]]
  54. A. Loeb, E. Waxman, “The Cumulative background of high energy neutrinos from starburst galaxies”, JCAP 0605, 003 (2006) [astro-ph/0601695] [NASA ADS] [CrossRef]
  55. M. Ackermann et al. [Fermi-LAT Collaboration], “The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV”, Astrophys. J. 799, 86 (2015) [arXiv:1410.3696 [astro-ph.HE]]
  56. K. Murase, M. Ahlers and B. C. Lacki, “Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube”, Phys. Rev. D 88(12), 121301 (2013) [arXiv:1306.3417 [astro-ph.HE]] [NASA ADS] [CrossRef]
  57. K. Bechtol, M. Ahlers, M. Di Mauro, M. Ajello, J. Vandenbroucke, “Evidence against star-forming galaxies as the dominant source of IceCube neutrinos,”arXiv:1511.00688 [astro-ph.HE]
  58. M. Ackermann et al. [Fermi-LAT Collaboration], “Resolving the Extragalactic γ-Ray Background above 50 GeV with the Fermi Large Area Telescope”, Phys. Rev. Lett. 116(15), 151105 (2016) [arXiv:1511.00693 [astro-ph.CO]] [PubMed]
  59. E. Resconi, S. Coenders, P. Padovani, P. Giommi, L. Caccianiga, “Connecting blazars with ultra high energy cosmic rays and astrophysical neutrinos”, arXiv:1611.06022 [astro-ph.HE]
  60. V. N. Zirakashvili and V. S. Ptuskin, “Type IIn supernovae as sources of high energy astrophysical neutrinos”, Astropart. Phys. 78, 28 (2016) [arXiv:1510.08387 [astro-ph.HE]] [CrossRef]
  61. A. Neronov and D. V. Semikoz, “Evidence the Galactic contribution to the IceCube astrophysical neutrino flux”, Astropart. Phys. 75, 60 (2016) [arXiv:1509.03522 [astro-ph.HE]] [CrossRef]
  62. F. Stecker, “Diffuse fluxes of cosmic high-energy neutrinos”, Astrophys. J. 228, 919 (1979)
  63. D. Gaggero, D. Grasso, A. Marinelli, A. Urbano and M. Valli, “The gamma-ray and neutrino sky: A consistent picture of Fermi-LAT, Milagro, and IceCube results”, Astrophys. J. 815, no. 2, L25 (2015) [arXiv:1504.00227 [astro-ph.HE]]
  64. M. Ackermann et al. [Fermi-LAT Collaboration], “Fermi-LAT Observations of the Diffuse Gamma-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium”, Astrophys. J. 750, 3 (2012) [arXiv:1202.4039 [astro-ph.HE]]
  65. B. Bartoli et al. [ARGO-YBJ Collaboration], “Study of the Diffuse Gamma-ray Emission From the Galactic Plane With ARGO-YBJ”, Astrophys. J. 806, 20 [arXiv:1507.06758 [astro-ph.IM]]
  66. M. Ackermann et al., “A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble”, Science 334(6059), 1103 (2011) [NASA ADS] [CrossRef] [PubMed]
  67. S. Adrian-Martinez et al. [ANTARES Collaboration], “Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope”, Phys. Lett. B 760, 143 (2016) [arXiv:1602.03036 [astro-ph.HE]]
  68. M. Ahlers, Y. Bai, V. Barger and R. Lu, “Galactic neutrinos in the TeV to PeV range”, Phys. Rev. D 93(1), 013009 (2016) [arXiv:1505.03156 [hep-ph]] [CrossRef]
  69. M. G. Aartsen et al. [IceCube Collaboration], “Neutrinos and Cosmic Rays Observed by IceCube”, arXiv:1701.03731 [astro-ph.HE]
  70. M. G. Aartsen et al. [IceCube Collaboration], “The IceCube Realtime Alert System”, arXiv:1612.06028 [astro-ph.HE]
  71. J. Brunner, for the KM3NeT Collaboration, presentation at RICAP 2016
  72. S. Adrian-Martinez et al. [KM3Net Collaboration], “Letter of intent for KM3NeT 2.0”, J. Phys. G 43(8), 084001 (2016) [arXiv:1601.07459 [astro-ph.IM]] [NASA ADS] [CrossRef]
  73. A. D. Avrorin et al. [BAIKAL Collaboration], “The prototyping/early construction phase of the BAIKAL-GVD project”, Nucl. Instrum. Meth. A 742, 82 (2014) [arXiv:1308.1833 [astro-ph.IM]] [CrossRef]
  74. M. G. Aartsen et al. [IceCube Collaboration], “IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica”, arXiv:1412.5106 [astro-ph.HE]
  75. M. G. Aartsen et al. [IceCube Collaboration], “IceCube-Gen2 – The Next Generation Neutrino Observatory at the South Pole: Contributions to ICRC 2015”, arXiv:1510.05228 [astro-ph.IM]
  76. M. G. Aartsen et al. [IceCube Collaboration], “PINGU: A Vision for Neutrino and Particle Physics at the South Pole”, arXiv:1607.02671 [hep-ex]
  77. S. W. Barwick et al., “Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf”, arXiv:1612.04473 [astro-ph.IM]
  78. P. Allison et al. [ARA Collaboration], “Performance of two Askaryan Radio Array stations and first results in the search for ultrahigh energy neutrinos”, Phys. Rev. D 93(8), 082003 (2016) [arXiv:1507.08991 [astro-ph.HE]] [NASA ADS] [CrossRef]
  79. Neutrino Astronomy: current status, future prospects (ed. Thomas Gaisser & Albrecht Karle, World Scientific 2017)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.