Open Access
Issue
EPJ Web Conf.
Volume 145, 2017
ISVHECRI 2016 – XIX International Symposium on Very High Energy Cosmic Ray Interactions
Article Number 18003
Number of page(s) 8
Section Final Session
DOI https://doi.org/10.1051/epjconf/201714518003
Published online 26 June 2017
  1. T. Pierog, These Proceedings [Google Scholar]
  2. O. Adriani et al. [PAMELA Collaboration], “PAMELA Measurements of Cosmic-ray Proton and Helium Spectra”, Science 332, 69 (2011) [arXiv:1103.4055 [astro-ph.HE]] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  3. M. Aguilar et al. [AMS Collaboration], “Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station”, Phys. Rev. Lett. 114, 171103 (2015) [CrossRef] [PubMed] [Google Scholar]
  4. M. Aguilar et al. [AMS Collaboration], “Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station”, Phys. Rev. Lett. 115(21), 211101 (2015) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  5. A. D. Panov et al., “Energy Spectra of Abundant Nuclei of Primary Cosmic Rays from the Data of ATIC-2 Experiment: Final Results”, Bull. Russ. Acad. Sci. Phys. 73, 564 (2009) [arXiv:1101.3246 [astro-ph.HE]] [Google Scholar]
  6. H. S. Ahn et al., “Energy spectra of cosmic-ray nuclei at high energies”, Astrophys. J. 707, 593 (2009) [arXiv:0911.1889 [astro-ph.HE]] [Google Scholar]
  7. ThomasK.Gaisser, RalphEngel and ElisaResconi, Cosmic Rays and Particle Physics (Cambridge University Press, 2016) [Google Scholar]
  8. G. Di Sciascio, this conference [Google Scholar]
  9. L. Kuzmichev, this conference [Google Scholar]
  10. B. Bartoli et al. [ARGO-YBJ and LHAASO Collaborations], “Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO”, Phys. Rev. D 92(9), 092005 (2015) [arXiv:1502.03164 [astro-ph.HE]] [CrossRef] [Google Scholar]
  11. T. Antoni et al. [KASCADE Collaboration], “KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems”, Astropart. Phys. 24, 1 (2005) [astro-ph/0505413] [Google Scholar]
  12. A. Haungs, this conference [Google Scholar]
  13. J. R. Hoerandel, “On the knee in the energy spectrum of cosmic rays”, Astropart. Phys. 19, 193 (2003) [astro-ph/0210453] [NASA ADS] [CrossRef] [Google Scholar]
  14. T. K. Gaisser, “Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio”, Astropart. Phys. 35, 801 (2012) [arXiv:1111.6675 [textttastro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  15. M. G. Aartsen et al. [IceCube Collaboration], “The IceCube Neutrino Observatory – Contributions to ICRC 2015 Part III: Cosmic Rays”, arXiv:1510.05225 [astro-ph.HE], pp. 37-44 [Google Scholar]
  16. W. D. Apel et al., “The spectrum of high-energy cosmic rays measured with KASCADE-Grande”, Astropart. Phys. 36, 183 (2012) [CrossRef] [Google Scholar]
  17. V. V. Prosin, this conference [Google Scholar]
  18. V. V. Prosin et al., “Tunka-133: Results of 3 year operation”, Nucl. Instrum. Meth. A 756, 94 (2014) [CrossRef] [Google Scholar]
  19. H. Dembinski, this conference [Google Scholar]
  20. M. G. Aartsen et al. [IceCube Collaboration], “Measurement of the cosmic ray energy spectrum with IceTop-73”, Phys. Rev. D 88(4), 042004 (2013) [arXiv:1307.3795 [astro-ph.HE]] [Google Scholar]
  21. W. D. Apel et al., “Ankle-like Feature in the Energy Spectrum of Light Elements of Cosmic Rays Observed with KASCADE-Grande”, Phys. Rev. D 87, 081101 (2013) [arXiv:1304.7114 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  22. J. Matthews, this conference [Google Scholar]
  23. D. Martello, this conference [Google Scholar]
  24. K. Greisen, “End to the cosmic ray spectrum?”, Phys. Rev. Lett. 16, 748 (1966) [Google Scholar]
  25. G.T. Zatsepin and V.A. Kuzmin, “Upper limit of the spectrum of cosmic rays”, JETP Lett. 4, 78 (1966) [Pisma Zh. Eksp. Teor. Fiz. 4, 114 (1966)] [Google Scholar]
  26. A. M. Hillas, “The Origin of Ultrahigh-Energy Cosmic Rays”, Ann. Rev. Astron. Astrophys. 22, 425 (1984) [Google Scholar]
  27. A. di Matteo et al. in “The Pierre Auger observatory: Contributions to the 34th international Cosmic aAy Conference (ICRC 2015)”, (arXiv:1509.03732) p. 103–110 [Google Scholar]
  28. R. U. Abbasi et al. [Telescope Array Collaboration], “Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment”, Astrophys. J. 790, L21 (2014) [arXiv:1404.5890 [astro-ph.HE]] [Google Scholar]
  29. A. Aab et al. [Pierre Auger Collaboration], “The Pierre Auger Observatory Upgrade - Preliminary Design Report”, arXiv:1604.03637 [astro-ph.IM] [Google Scholar]
  30. K. H. Kampert and M. Unger, “Measurements of the Cosmic Ray Composition with Air Shower Experiments”, Astropart. Phys. 35, 660 (2012) [arXiv:1201.0018 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  31. K. Rawlins [IceCube Collaboration], J. Phys. Conf. Ser. 718(5), 052033 (2016). doi: 10.1088/1742-6596/718/5/052033 [Google Scholar]
  32. E. J. Ahn, R. Engel, T. K. Gaisser, P. Lipari, T. Stanev, “Cosmic ray interaction event generator SIBYLL 2.1”, Phys. Rev. D 80, 094003 (2009) [arXiv:0906.4113 [hep-ph]] [NASA ADS] [CrossRef] [Google Scholar]
  33. V. Ptuskin, this conference [Google Scholar]
  34. T. Hams et al., “Elemental Abundances of Ultra-Heavy GCRs measured by SuperTIGER and ACE-CRIS and the Origin of Galactic Cosmic Rays”, PoS ICRC 2015, 038 (2016) [Google Scholar]
  35. P. Blasi and E. Amato, “Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition”, JCAP 1201, 010 (2012) [arXiv:1105.4521 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  36. P. Blasi and E. Amato, “Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy”, JCAP 1201, 011 (2012) [arXiv:1105.4529 [astro-ph.HE]] [CrossRef] [Google Scholar]
  37. M. G. Aartsen et al. [IceCube Collaboration], “The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors”, arXiv:1510.05223 [astro-ph.HE] [Google Scholar]
  38. M. G. Aartsen et al. [IceCube Collaboration], “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data”, Phys. Rev. Lett. 113, 101101 (2014) [arXiv:1405.5303 [astro-ph.HE]] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  39. S. Schonert, T. K. Gaisser, E. Resconi and O. Schulz, “Vetoing atmospheric neutrinos in a high energy neutrino telescope”, Phys. Rev. D 79, 043009 (2009) [arXiv:0812.4308 [astro-ph]] [CrossRef] [Google Scholar]
  40. T. K. Gaisser, K. Jero, A. Karle, J. van Santen, “Generalized self-veto probability for atmospheric neutrinos”, Phys. Rev. D 90(2), 023009 (2014) [arXiv:1405.0525 [astro-ph.HE]] [CrossRef] [Google Scholar]
  41. M. G. Aartsen et al. [IceCube Collaboration], “Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube”, Phys. Rev. D 91(2), 022001 (2015) [arXiv:1410.1749 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  42. M. G. Aartsen et al. [IceCube Collaboration], “Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data”, Astrophys. J. 833(1), 3 (2016) [arXiv:1607.08006 [astro-ph.HE]] [Google Scholar]
  43. M. G. Aartsen et al. [IceCube Collaboration], “A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube”, Astrophys. J. 809(1), 98 (2015) [arXiv:1507.03991 [astro-ph.HE]] [Google Scholar]
  44. E. Waxman, J. N. Bahcall, “High-energy neutrinos from astrophysical sources: An Upper bound”, Phys. Rev. D 59, 023002 (1999) [hep-ph/9807282] [Google Scholar]
  45. J. N. Bahcall, E. Waxman, “High-energy astrophysical neutrinos: The Upper bound is robust”, Phys. Rev. D 64, 023002 (2001) [hep-ph/9902383] [NASA ADS] [CrossRef] [Google Scholar]
  46. M. G. Aartsen et al. [IceCube Collaboration], “Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube”, Phys. Rev. Lett. 117(24), 241101 (2016) [arXiv:1607.05886 [astro-ph.HE]] [Google Scholar]
  47. M. G. Aartsen et al. [IceCube Collaboration], “All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data”, Astrophys. J. 835(2), 151 (2017) [arXiv:1609.04981 [astro-ph.HE]] [Google Scholar]
  48. P. Lipari, “Proton and Neutrino Extragalactic Astronomy”, Phys. Rev. D 78, 083011 (2008) [arXiv:0808.0344 [astro-ph]] [CrossRef] [Google Scholar]
  49. M. Ahlers and F. Halzen, “Pinpointing Extragalactic Neutrino Sources in Light of Recent IceCube Observations”, Phys. Rev. D 90(4), 043005 (2014) [arXiv:1406.2160 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  50. K. Murase, E. Waxman, “Constraining High-Energy Cosmic Neutrino Sources: Implications and Prospects”, Phys. Rev. D 94(10), 103006 (2016) [arXiv:1607.01601 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  51. M. Kowalski, “Status of High-Energy Neutrino Astronomy”, J. Phys. Conf. Ser. 632(1), 012039 (2015) [arXiv:1411.4385 [astro-ph.HE]] [Google Scholar]
  52. M. G. Aartsen et al. [IceCube Collaboration], “The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux”, Astrophys. J. 835(1), 45 (2017) [arXiv:1611.03874 [astro-ph.HE]] [Google Scholar]
  53. M. G. Aartsen et al. [IceCube Collaboration], “An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory”, Astrophys. J. 824(2), 115 (2016) [arXiv:1601.06484 [astro-ph.HE]] [Google Scholar]
  54. A. Loeb, E. Waxman, “The Cumulative background of high energy neutrinos from starburst galaxies”, JCAP 0605, 003 (2006) [astro-ph/0601695] [Google Scholar]
  55. M. Ackermann et al. [Fermi-LAT Collaboration], “The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV”, Astrophys. J. 799, 86 (2015) [arXiv:1410.3696 [astro-ph.HE]] [Google Scholar]
  56. K. Murase, M. Ahlers and B. C. Lacki, “Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube”, Phys. Rev. D 88(12), 121301 (2013) [arXiv:1306.3417 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  57. K. Bechtol, M. Ahlers, M. Di Mauro, M. Ajello, J. Vandenbroucke, “Evidence against star-forming galaxies as the dominant source of IceCube neutrinos,”arXiv:1511.00688 [astro-ph.HE] [Google Scholar]
  58. M. Ackermann et al. [Fermi-LAT Collaboration], “Resolving the Extragalactic γ-Ray Background above 50 GeV with the Fermi Large Area Telescope”, Phys. Rev. Lett. 116(15), 151105 (2016) [arXiv:1511.00693 [astro-ph.CO]] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  59. E. Resconi, S. Coenders, P. Padovani, P. Giommi, L. Caccianiga, “Connecting blazars with ultra high energy cosmic rays and astrophysical neutrinos”, arXiv:1611.06022 [astro-ph.HE] [Google Scholar]
  60. V. N. Zirakashvili and V. S. Ptuskin, “Type IIn supernovae as sources of high energy astrophysical neutrinos”, Astropart. Phys. 78, 28 (2016) [arXiv:1510.08387 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  61. A. Neronov and D. V. Semikoz, “Evidence the Galactic contribution to the IceCube astrophysical neutrino flux”, Astropart. Phys. 75, 60 (2016) [arXiv:1509.03522 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  62. F. Stecker, “Diffuse fluxes of cosmic high-energy neutrinos”, Astrophys. J. 228, 919 (1979) [Google Scholar]
  63. D. Gaggero, D. Grasso, A. Marinelli, A. Urbano and M. Valli, “The gamma-ray and neutrino sky: A consistent picture of Fermi-LAT, Milagro, and IceCube results”, Astrophys. J. 815, no. 2, L25 (2015) [arXiv:1504.00227 [astro-ph.HE]] [Google Scholar]
  64. M. Ackermann et al. [Fermi-LAT Collaboration], “Fermi-LAT Observations of the Diffuse Gamma-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium”, Astrophys. J. 750, 3 (2012) [arXiv:1202.4039 [astro-ph.HE]] [Google Scholar]
  65. B. Bartoli et al. [ARGO-YBJ Collaboration], “Study of the Diffuse Gamma-ray Emission From the Galactic Plane With ARGO-YBJ”, Astrophys. J. 806, 20 [arXiv:1507.06758 [astro-ph.IM]] [Google Scholar]
  66. M. Ackermann et al., “A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble”, Science 334(6059), 1103 (2011) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  67. S. Adrian-Martinez et al. [ANTARES Collaboration], “Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope”, Phys. Lett. B 760, 143 (2016) [arXiv:1602.03036 [astro-ph.HE]] [Google Scholar]
  68. M. Ahlers, Y. Bai, V. Barger and R. Lu, “Galactic neutrinos in the TeV to PeV range”, Phys. Rev. D 93(1), 013009 (2016) [arXiv:1505.03156 [hep-ph]] [CrossRef] [Google Scholar]
  69. M. G. Aartsen et al. [IceCube Collaboration], “Neutrinos and Cosmic Rays Observed by IceCube”, arXiv:1701.03731 [astro-ph.HE] [Google Scholar]
  70. M. G. Aartsen et al. [IceCube Collaboration], “The IceCube Realtime Alert System”, arXiv:1612.06028 [astro-ph.HE] [Google Scholar]
  71. J. Brunner, for the KM3NeT Collaboration, presentation at RICAP 2016 [Google Scholar]
  72. S. Adrian-Martinez et al. [KM3Net Collaboration], “Letter of intent for KM3NeT 2.0”, J. Phys. G 43(8), 084001 (2016) [arXiv:1601.07459 [astro-ph.IM]] [Google Scholar]
  73. A. D. Avrorin et al. [BAIKAL Collaboration], “The prototyping/early construction phase of the BAIKAL-GVD project”, Nucl. Instrum. Meth. A 742, 82 (2014) [arXiv:1308.1833 [astro-ph.IM]] [Google Scholar]
  74. M. G. Aartsen et al. [IceCube Collaboration], “IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica”, arXiv:1412.5106 [astro-ph.HE] [Google Scholar]
  75. M. G. Aartsen et al. [IceCube Collaboration], “IceCube-Gen2 – The Next Generation Neutrino Observatory at the South Pole: Contributions to ICRC 2015”, arXiv:1510.05228 [astro-ph.IM] [Google Scholar]
  76. M. G. Aartsen et al. [IceCube Collaboration], “PINGU: A Vision for Neutrino and Particle Physics at the South Pole”, arXiv:1607.02671 [hep-ex] [Google Scholar]
  77. S. W. Barwick et al., “Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf”, arXiv:1612.04473 [astro-ph.IM] [Google Scholar]
  78. P. Allison et al. [ARA Collaboration], “Performance of two Askaryan Radio Array stations and first results in the search for ultrahigh energy neutrinos”, Phys. Rev. D 93(8), 082003 (2016) [arXiv:1507.08991 [astro-ph.HE]] [NASA ADS] [CrossRef] [Google Scholar]
  79. Neutrino Astronomy: current status, future prospects (ed. Thomas Gaisser & Albrecht Karle, World Scientific 2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.