Open Access
EPJ Web Conf.
Volume 146, 2017
ND 2016: International Conference on Nuclear Data for Science and Technology
Article Number 09041
Number of page(s) 4
Section Nuclear Data for Applications
Published online 13 September 2017
  1. S. Iso, I. Kobayashi, S. Masuda, et al., Proceedings of the 32nd Annual Meeting of INMM Japan Chapter, Status of the development of safeguards for large scale MOX fuel fabrication plant (2011) [Google Scholar]
  2. W.S Charlton, M.A Humphrey, J Nucl Mat Maneg, External review of the next generation safeguards initiative’s spent fuel nondestructive assay project 40, 18 (2012) [Google Scholar]
  3. H. Ohgaki, T. Kii, K. Masuda, et al., Procceding of IEEE HST, Conceptual design of a nuclear material detection system based on the neutron/gamma-ray hybrid approach, 525-529 (2010) [Google Scholar]
  4. R. Hajima, T. Shizuma, T. Hayakawa, et al., Proceedings of IPAC, Compact gamma-ray source for non-destructive detection of nuclear material in cargo, 3663–3665 (2011) [Google Scholar]
  5. R. Hajima, T. Hayakawa, N. Kikuzawa, et al., J. Nucl. Sci. Technol. Proposal of nondestructive radionuclide assay using a high-flux gamma-ray source and nuclear resonance florescence 45, 441 (2008) [Google Scholar]
  6. M. Seya, H. Harada, F. Kitatani, et al., Paper presented at: INMM 54th Annual Meeting, Development of basic NDA technologies for nuclear material accountancy of debris of melted fuel formed in severe accidents (2013) [Google Scholar]
  7. M. Seya, H. Harada, F. Kitatani, et al., Proceedings of 35th ESARDA Annual Meeting, Promising NDA technologies for material accountancy of nuclear material in debris of melted fuel of Fukushima-Daiichi NPP (2013) [Google Scholar]
  8. H. Sagara, H. Tomikawa, M. Watahiki, et al., J. Nucl. Sci. Technol. Feasibility study of passive gamma spectrometry of molten core material from Fukushima Daiichi Nuclear Power Station unit 1, 2, and 3 cores for special nuclear material accountancy –low-volatile FP and special nuclear material inventory analysis and fundamental characteristics of gamma-rays from fuel debris 51, 1 (2014) [Google Scholar]
  9. Y. Nauchi, H. Ohta, H. Unesaki, et al., J. Nucl. Sci. Technol. Concept of capture credit based on neutron-induced gamma ray spectroscopy 52, 1074-1083 (2015) [Google Scholar]
  10. R. Kimura, H. Sagara, S. Chiba, J. Nucl. Sci. Technol. Principle validation of nuclear fuel material isotopic composition measurement method based on photofission reactions 53, 1978-1987 (2016) [Google Scholar]
  11. S. Chen, D. Powers, I. Ghebregziabher, et al., Phys. Rev. Lett. MeV-energy X rays from inverse Compton scattering with Laser-wakefield accelerated electrons 110, 155003 (2013) [Google Scholar]
  12. S. Miyamoto, Y. Asano, S. Amano, et al., Rad. Meas. Laser Compton back-scattering gamma-ray beamline on NewSUBARU 41, S179 (2006) [Google Scholar]
  13. S. Boucher, P. Frigola, A. Murokh, et al., Nuc. Inst. Methods Phys. Res. A, Inverse Compton scattering gamma ray source 608, S54-56 (2009) [Google Scholar]
  14. M.B Chadwick, M. Herman, P. Oblozinsky, et al., Nucl. Data Sheets, ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data 112, 2887-2996 82011) [Google Scholar]
  15. T. Goorley, M. James, T. Booth, et al., Nucl. Technol. Initial MCNP6 release overview 180, 298-315 (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.