Open Access
Issue
EPJ Web Conf.
Volume 149, 2017
10th International Workshop 2017 “Strong Microwaves and Terahertz Waves: Sources and Applications”
Article Number 04007
Number of page(s) 2
Section High-power microwave sources
DOI https://doi.org/10.1051/epjconf/201714904007
Published online 04 August 2017
  1. G. Granucci et al. The EC-system of EU DEMO: concepts for a reactor heating system // SMP, 2017, Nhizhny-Novgorod. [Google Scholar]
  2. B. Piosczyk et al. 165-GHz coaxial cavity gyrotron // IEEE Trans. Plasma Science, 2004, Vol. 32, No. 3, 413-417. [CrossRef] [Google Scholar]
  3. T. Rzesnicki, et al. 2.2-MW Record Power of the 170-GHz European Pre-Prototype Coaxial-Cavity Gyrotron for ITER // IEEE Trans. Plasma Science, 2010, Vol. 38, No. 6, pp. 1141-1149. [CrossRef] [Google Scholar]
  4. J.-P. Hogge et al The European 2MW, 170GHz coaxial cavity gyrotron for ITER // Joint 32nd IRMMW/15th Int. Conf. on THz Electronics, 2007, Cardiff. [Google Scholar]
  5. S. Ruess et al. Design and Manufacturing Process for the KIT 2-MW 170-GHz Coaxial-Cavity Longer-Pulse Gyrotron // SMP, 2017, Nhizhny-Novgorod [Google Scholar]
  6. Bertinetti et al. Multi-physics analysis of a 1 MW gyrotron cavity cooled by mini-channels // presented at SOFT, 2016, P1.029, accepted for publication in Fus. Eng. Des., 2017. [Google Scholar]
  7. K. Avramidis et al. Numerical studies on the influence of cavity thermal expansion on the performance of a high-power gyrotron // IVEC, London, 2017. [Google Scholar]
  8. I. Pagonakis et al. Influence of emitter ring manufacturing tolerances on electron beam quality of high power gyrotrons, // Physics of Plasmas, 2016, 23, 083103, doi:10.1063/1.4959113. [Google Scholar]
  9. S. Ruess et al. An Inverse Magnetron Injection Gun for the KIT 2-MW Coaxial-Cavity Gyrotron // IEEE Trans. Electron Devices, 2016, Vol. 63, pp. 2104-2109. [CrossRef] [Google Scholar]
  10. J. Franck, et.al. A generic mode selection strategy for high-order mode gyrotrons operating at multiple frequencies // Nucl. Fusion, 2014, Vol. 55, No. 1. [Google Scholar]
  11. J. Franck, et. al. Direct voltage depression calculation of arbitrary electron beams in misaligned coaxial gyrotron cavities // IEEE Trans. on Electron Devices, 2016, Vol. 63, No. 9. [CrossRef] [Google Scholar]
  12. J. Franck, et.al. Insert misalignment in coaxial gyrotrons: physical effects and numerical treatment // 5th ITG Int. Vacuum Electronics Workshop, 8 - 9, Sept. 2016, Bad Honnef, Germany. [Google Scholar]
  13. P. Kalaria, et. al. RF behavior and launcher design for a fast frequency step-tunable 236 GHz gyrotron for DEMO // Journal of RF-Engineering and Telecommunications - Frequenz, 2016, Vol. 71, No. 3-4, pp. 161-171. [EDP Sciences] [Google Scholar]
  14. P. Kalaria, et. al. Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior // Physics of Plasmas, 2016, Vol. 23, No. 9. [CrossRef] [Google Scholar]
  15. G. Gantenbein et al. First operation of a step-frequency tunable 1-MW gyrotron with a diamond Brewster angle output window // IEEE Trans. Electron Devices, 2014, Vol.61, No. 6, pp.1806-1811. [CrossRef] [Google Scholar]
  16. G. Aiello et al. CVD diamond Brewster window: feasibility study by FEM analysis // Proc. Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Deurne, 2012. [Google Scholar]
  17. G. Aiello et al. Cooling concepts for the CVD diamond Brewster-angle window // IRMMW-THz 2017. [Google Scholar]
  18. C. Wu et al. Comparison between Controlled Non-Adiabatic and ExB Concepts // SMP, 2017, Nhizhny-Novgorod. [Google Scholar]
  19. I. Pagonakis et al. A New concept for the collection of an electron beam configured by an externally applied axial magnetic field // IEEE Trans. Plasma Sci., 2008, vol. 36, no. 2, pp. 469-480. [CrossRef] [Google Scholar]
  20. I.Gr. Pagonakis et al. Multistage depressed collector conceptual design for thin magnetically confined electron beams // Physics of Plasmas, 2016, 23, 043114. [Google Scholar]
  21. C. Wu et al. Conceptual designs of E x B multistage depressed collectors for gyrotrons // Physics of Plasmas, 2017, Vol. 24, No. 4, 043102. [Google Scholar]
  22. C. Wu et al. Novel multistage depressed collector for high power fusion gyrotrons based on an E×B Drift concept // IVEC, 2017, London. [Google Scholar]
  23. F. Wilde et al. Measurements of satellite modes in 140 GHz Wendelstein 7-X gyrotrons: an approach to an electronic stability control // IVEC, 2017, London. [Google Scholar]
  24. M. Schmid et al. The 10 MW EPSM modulator and other key components for the KIT gyrotron test facility FULGOR // Fus. Eng. Des., 2017, https://doi.org/10.1016/j.fusengdes.2017.02.035. [Google Scholar]
  25. M. Losert et al. RF Beam Measurements of Quasi-Optical Mode Converters in the mW Range // IEEE Trans. Plasma Sci., 2013, Vol. 41, No. 3, pp. 628-632. [CrossRef] [Google Scholar]
  26. A. Schlaich et al. Time-dependent spectrum analysis of high power gyrotrons // KIT Sci. Publishing, 2015, IHM. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.