Open Access
Issue
EPJ Web Conf.
Volume 154, 2017
3rd International Conference on Theoretical and Experimental Studies in Nuclear Applications and Technology (TESNAT 2017)
Article Number 01029
Number of page(s) 21
DOI https://doi.org/10.1051/epjconf/201715401029
Published online 29 September 2017
  1. J. Višňák, L. Sobek, EPJ Web of Conferences 128, 02002 (2016). [CrossRef] [EDP Sciences] [Google Scholar]
  2. R. J. Lakowicz, Principles of Fluorescence Spectroscopy, (Third Edition, Springer), (2006). [Google Scholar]
  3. J. Višňák, Master Thesis, FNSPE, Czech Technical University (2010) (In Czech). [Google Scholar]
  4. C. Moulin, I. Laszak, V. Moulin, and C. Tondre: Appl Spectrosc 52 (1998) 528. [CrossRef] [Google Scholar]
  5. J. Višňák, Bachelor project, FNSPE, Czech Technical University in Prague (2008) (In Czech). [Google Scholar]
  6. G. Meinrath, Aquatic Chemistry of Uranium, Review Focusing on Aspects of Environmental Chemistry, (Freiberg On-line Geoscience Vol.1), (1998). [Google Scholar]
  7. J. Višňák, J. Bok, A. Vetešník, Annual report of the Department of Nuclear Chemistry 2008-2010, Prague. http://www.jaderna-chemie.cz/data/documents/vyrocni_zpravy/AR2008-2010.pdf (page 23). [Google Scholar]
  8. B. Rasmus: PARAFAC. Tutorial & applications. Chemometrics Group, Food Technology, Royal Veterninary & Agricultural University. Rolighedsvej 30, III, DK-1958 Frederiksberg C, Denmark, http://www.models.kvl.dk/~rasmus/presentations/parafac_tutorial/paraf.htm. [Google Scholar]
  9. R. A. Harshman, (1970). UCLA Working Papers in Phonetics, 16, 84 pp. (University Microfilms, Ann Arbor, No. 10,085). [Google Scholar]
  10. R. Harshman, M. Lundy, The PARAFAC model for three-way factor analysis and multidimensional scaling, In Research methods for multimode data analysis, chapter 5, pages 122–215. Praeger, New York (1984). [Google Scholar]
  11. Ch. F. Beckmann, S. M. Smith : Tensorial Extensions of Independent Component Analysis for Multi-Subject FMRI Analysis. FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain) Technical Report TR04CB1, Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, UK, http://www.fmrib.ox.ac.uk/analysis/techrep/tr04cb1/tr04cb1/tr04cb1.html. [Google Scholar]
  12. R. Harshman, and M. Lundy, (1994). Comput Stat Data An, 18:39–72. [CrossRef] [Google Scholar]
  13. Y. Yokoyama, M. Moriyasu, S. Ikeda, J. inorg, nucl. Chem., (1976), 38, pp. 132%1333. Pergamon Press. [CrossRef] [Google Scholar]
  14. H. D. Burrows, S. J. Formosinho, M. G. Miguel, F. P. Coelho, J. Chem. Soc., Faraday Trans. 1, (1976),72, 163–171, 10.1039/F19767200163. [CrossRef] [Google Scholar]
  15. R. Matsushima, S. Sakuraba, J. Am. Chem. Soc., (1971), 93 (26), pp 7143–7145, DOI: 10.1021/ja00755a004. [CrossRef] [Google Scholar]
  16. H. D. Burrows, S. J. Formosinho. J. Chem. Educ, (1978), 55 (2) p 125., DOI 10.1021/ed055p125. [CrossRef] [Google Scholar]
  17. M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M G. M. Miguel, J. Chem. Soc., Faraday Trans. I, (1989), 85 (8), 2625–2634. [CrossRef] [Google Scholar]
  18. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC16 (2016), written by H. J. Aa. Jensen, R. Bast, T. Saue, and L. Viss cher, with contributions from V. Bakken, K. G. Dyall, S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (see http://www.diracprogram.org). [Google Scholar]
  19. L. H. Jones, Spectrochim Acta, (1958), 10, pp.395–403. Pergamon Press Ltd., London. [Google Scholar]
  20. Bartecki A., On the Theory of Uranyl Compounds in Solutions, in Theory and Structure of Complex Compounds, Proceedings of the Symposium held at Wroclaw, s. 233–247, (1964). [CrossRef] [Google Scholar]
  21. Ch. Görller-Walrand, S. De Houwer, L. Fluyt, K. Binnemans, Phys. Chem. Chem. Phys., (2004), 6, 3292–3298. [CrossRef] [Google Scholar]
  22. V. E. Jackson, R. Craciun, D. A. Dixon, K. A. Peterson, W. A. de Jong, J. Phys. Chem. A, 112, 4095–4099, (2008). [CrossRef] [PubMed] [Google Scholar]
  23. J. Višňák, J. Kuba, A. Vetešník, J. Bok, V. Sladkov UO2(2+) - XO4(2-) - H2O TRLFS and spectrophotometric speciation study (X=S, Se) In Lectures of colloquium on Radioanalytical methods, IAA 14, Edited by Jiří Mizera, Ioannes Marcus Marci Spectroscopic Society - IMMSS, ISBN 978-80-905704-4-3 (2014). [Google Scholar]
  24. Z. Wang, J. M. Zachara, W. Yantasee, P. Gassman, Ch. Liu, Environ. Sci. Technol., 38, 5591–5597 (2004). [CrossRef] [PubMed] [Google Scholar]
  25. M. Gal, P.L. Goggin, J. Mink, Spectrochim. Acta 48A (1992). [Google Scholar]
  26. J. T. Bell, R. E. Biggers, J. Mol Spectrosc, 25, 312 (1986). [CrossRef] [Google Scholar]
  27. https://www.hzdr.de/db/Cms?pOid=14407%20pNid=334 [Google Scholar]
  28. Molecular Spectroscopy and Chemical Dynamics, lecture text, Spring Term 2013, University of Basel, Department of Chemistry, http://www.chemie.unibas.ch/~willitsch/vtv_files/normal_modes_S.pdf. [Google Scholar]
  29. R. Steudtner, personal communication at HZDR, 2017. [Google Scholar]
  30. C. Eckart, G. Young, (1936). 1 (3): 211–8. doi:10.1007/ BF02288367. [Google Scholar]
  31. M. R. Hestenes, (1958). J Soc Ind Appl Math. 6 (1): 51–90. JSTOR 2098862. MR 0092215. doi:10.1137/0106005. [CrossRef] [Google Scholar]
  32. G. H. Golub, W. Kahan, (1965). 2 (2): 205–224. JSTOR 2949777. MR 0183105. doi: 10.1137/0702016. [Google Scholar]
  33. D. Vopálka et al, Report to the final control day with respect to the contract between Radioactive Waste Repository Authority (RAWRA) and Czech Technical University (FNSPE) (Phase 4) (n. 4007016), Prague, July 2009 (Chapter 2.2 (author: A. Vetešník), Chapter 2.3 (J. Višňák), Chapter 3 (J. Šebera)) (In Czech). [Google Scholar]
  34. T. W. Anderson, An Introduction to Multivariate Statistical Analysis, (Wiley, New York, 1958). [Google Scholar]
  35. K.V. Mardia, J.T. Kent, J.M. Bibby (1979). Multivariate Analysis. Academic Press,. ISBN 0124712525. (M.A. level “likelihood” approach). [Google Scholar]
  36. R. A. Johnson, D. W. Wichern, (2007). Applied Multivariate Statistical Analysis (Sixth ed.). Prentice Hall. ISBN 978-0-13-187715-3. [Google Scholar]
  37. J. Pfanzagl, with the assistance of R. Hamböker (1994). Parametric statistical theory. Walter de Gruyter, Berlin, DE. pp. 207–208. ISBN 3-11-013863-8. [Google Scholar]
  38. L. J. Savage, (1976). The Annals of Statistics. 4 (3): 441–500. JSTOR 2958221. doi:10.1214/aos/1176343456. [CrossRef] [Google Scholar]
  39. J. W. Pratt, (1976). The Annals of Statistics. 4 (3): 501–514. JSTOR 2958222. doi:10.1214/aos/1176343457. [CrossRef] [Google Scholar]
  40. A. Hald, (1999). Stat Sci. 14 (2): 214–222. JSTOR 2676741. doi:10.1214/ss/1009212248. [CrossRef] [Google Scholar]
  41. J. Aldrich, (1997). 12 (3): 162–176. MR 1617519. doi:10.1214/ss/1030037906. [Google Scholar]
  42. M. Hazewinkel, ed. (2001), Maximum-likelihood method, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4. [Google Scholar]
  43. O. Y. Rodionova, A. L. Pomerantsev, Russ Chem Rev 75 (4) 271–287 (2006). [CrossRef] [Google Scholar]
  44. E. H. Moore, (1920). B Am Math Soc. 26 (9): 394–395. doi:10.1090/S0002-9904-1920-03322-7. [Google Scholar]
  45. A. Bjerhammar, (1951). Application of calculus of matrices to method of least squares; with special references to geodetic calculations. Trans. Roy. Inst. Tech. Stockholm. 49. [Google Scholar]
  46. R. Penrose, (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society. 51: 406–413. doi:10.1017/S0305004100030401. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  47. G. H. Golub, F. V.L. Charles (1996). Matrix computations (3rd ed.). Baltimore: Johns Hopkins. pp. 257–258. ISBN 0-8018-5414-8. [Google Scholar]
  48. A. Ben-Israel, T. N.E. Greville (2003). Generalized Inverses. Springer-Verlag. ISBN 0-387-00293-6. [Google Scholar]
  49. J. Bečvář: Linear Algebra, matfyzpress, Praha 2002, chap. „Pseudoinverzní homomorfismy a matice“, 414–431 (In Czech). [Google Scholar]
  50. R. G. Brereton, Applied Chemometrics for Scientists, University of Bristol, Wiley, 2007, ISBN-13: 978-0-470-01686-2. [Google Scholar]
  51. J. N. Miller, J. V. Miller, Statistics and Chemometrics for Analytical Chemistry, Pearson Edu. L., Sixth edition 2010, ISBN: 978-0-273-73042-2. [Google Scholar]
  52. J. Franck, (1926). T Faraday Soc. 21: 536–542. doi:10.1039/tf9262100536. [CrossRef] [Google Scholar]
  53. E. Condon, (1928). Phys Rev 32: 858–872. doi:10.1103/PhysRev.32.858. [NASA ADS] [CrossRef] [Google Scholar]
  54. A. S. Coolidge, H. M. James, R. D. Present, (1936). J Chem Phys 4: 193–211. doi:10.1063/1.1749818. [CrossRef] [Google Scholar]
  55. P. W. Atkins, R. S. Friedman (1999). Molecular Quantum Mechanics. Oxford: Oxford University Press. ISBN 0-19-855947-X (page 386). [EDP Sciences] [Google Scholar]
  56. J.-L. Chang, J. Mol. Spectrosc., 232, 102–104, (2005). [CrossRef] [Google Scholar]
  57. R. Islampour, M. Dehestani, S. H. Lin, J. Mol. Spectrosc. 194, 179–184 (1999). [CrossRef] [PubMed] [Google Scholar]
  58. P.-A. Malmqvist, N. Forsberg, Chem. Phys., 228, 227–240, (1998). [CrossRef] [Google Scholar]
  59. F. Duschinsky, Acta Physicochim. USRR 7, 551 (1937). [Google Scholar]
  60. P. T. Ruhoff, Ph.D. Thesis, Odense University, 1995. [Google Scholar]
  61. I. J. Ozkan, Mol. Spec. (1990), 139, 147–162. [CrossRef] [Google Scholar]
  62. A. W. Adamson, (1976), Adv Chem, 150 (Chap. 12). 128-148. ISBN13: 9780841202818, 10.1021/ba-1976-0150.ch012. [Google Scholar]
  63. http://www.theanalysisfactor.com/factor-analysis-how-many-factors/ [Google Scholar]
  64. http://ba-finance-2013.blogspot.no/2012/09/scree-plots-interpretation-and.html [Google Scholar]
  65. LabSpec, http://www.horiba.com/scientific/products/raman-spectroscopy/software/ [Google Scholar]
  66. R. Steudtner, H. Neubert, V. Brendler, B. Drobot, Report zum Analysenauftrag „Nachweis und die Charakterisierung von Uran-Spezies in wässrigen Umweltproben“, 2014, Institut für Bergbau der TU Bergakademie Freiberg (in Absprache mit Wismut GmbH). [Google Scholar]
  67. Z. Wang, J. M. Zachara, W. Yantasee, P. L. Gassman, C. X. Liu, A. G. Joly. (2004) Environmental Science & Technology 38: 5591–5597. [CrossRef] [PubMed] [Google Scholar]
  68. T.J. Wolery (1992). EQ3/6, A software package for the geochemical modelling of aqueous systems. UCRL-MA-110662 Part I, Lawrence Livermore National Laboratory. [Google Scholar]
  69. D.L. Parkhurst, C.A.J. Appelo, (2013), Description of input and examples for PHREEQC version 3--A computer program for speciation, batch- reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06/a43. [Google Scholar]
  70. R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. A. Palmer, M.H. Rand, (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Chemical Thermodynamics Vol. 5 (OECD Nuclear Energy Agency, ed.), Elsevier, Amsterdam. [Google Scholar]
  71. Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S., Nitsche, H. (2001) Radiochim. Acta 89: 511–518. [CrossRef] [Google Scholar]
  72. W. Dong, S. Brooks, (2006) Environ. Sci. Technol. 40: 4689–4695. [CrossRef] [PubMed] [Google Scholar]
  73. A.A.A. Osman, (2014) Ph.D. thesis, TU Dresden, 124pp. [Google Scholar]
  74. C. Götz, G. Geipel, G. Bernhard, (2011) J. Radioanal. Nucl. Chem. 287:961–969. [CrossRef] [Google Scholar]
  75. S. V. Lotnik, L.A. Khamidullina, V.P. Kazakov, (2003) Radiochemistry 45:499–502. [CrossRef] [Google Scholar]
  76. J. Višňák, L. Sobek, Quasirelativistic Quantum Chemical calculations of Uranyl(VI)-Sulfates Spectroscopic properties, in Department of Nuclear Chemistry Annual Report 2015–2016. [Google Scholar]
  77. J. Višňák, L. Sobek L. (2017), MetaCentrum Annual. Report, in publication. [Google Scholar]
  78. TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. [Google Scholar]
  79. X. Cao, M. Dolg, J. Molec. Struct., 673, 203–209 (2004). [CrossRef] [Google Scholar]
  80. M. Dolg, in Proceedings, Second Edition, J. Grotendorst (Ed.), John von Neumann Institute for Computing, Julich, NIC Series, 3, pp. 507–540 (2000). [Google Scholar]
  81. K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs; Chem. Phys. Letters 242, 652 (1995). [CrossRef] [Google Scholar]
  82. A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys., 97, 2571 (1992). [CrossRef] [Google Scholar]
  83. F. Weigend et al, Chem. Phys. Letters 294, 143 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  84. P. Hohenberg, W. Kohn, Phys. Rev. 136 (3B): B864–B871, (1964). [CrossRef] [MathSciNet] [Google Scholar]
  85. W. Kohn, L. J. Sham, Phys. Rev. 140 (4A): A1133-A1138 (1965). [CrossRef] [MathSciNet] [Google Scholar]
  86. A. ysSzabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill Publishing Company, New York, (1989). [Google Scholar]
  87. E. Runge, E. K. U. Gross, Phys. Rev. Lett. 52 (12): 997–1000 (1984). [CrossRef] [Google Scholar]
  88. M. Petersilka, U. J. Gossmann; E.K.U. Gross, Phys. Rev. Lett. 76 (8): 1212–1215 (1996). [CrossRef] [PubMed] [Google Scholar]
  89. C. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford Graduate Texts), Oxford University Press, (2012). [Google Scholar]
  90. A. D. Becke, J. Chem. Phys. 98 (7): 5648–5652 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  91. S. Grimme, J. Antony, S. Ehrlich, Krieg, J. Chem. Phys, 132, 154104 (2010). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  92. G. Schaftenaar and J.H. Noordik, J. Comput.-Aided Mol. Design, 14, 123–134, (2000). [CrossRef] [EDP Sciences] [Google Scholar]
  93. O. Treutler, R. Ahlrichs, J Chem Phys 102: 346 (1995) [NASA ADS] [CrossRef] [Google Scholar]
  94. R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel, Chem. Phys. Lett. 162: 165 (1989) [NASA ADS] [CrossRef] [Google Scholar]
  95. F. Weigend, F. Furche, R. Ahlrichs, J. Chem. Phys. 119, 12753 (2003). [CrossRef] [Google Scholar]
  96. S. Tsushima, Y. Uchida, T. Reich, Chem Phys Lett 357 (2002) 73–77. [CrossRef] [Google Scholar]
  97. A. O. Tirler, T. S. Hofer, Dalton Trans., (2016), 45, 4983, DOI: 10.1039/c5dt04718h. [CrossRef] [PubMed] [Google Scholar]
  98. A. Vetešník, J. Višňák, MyExpFit V4 program. [Google Scholar]
  99. MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States. [Google Scholar]
  100. Wolfram Research, Inc., Mathematica, Version 10.4, Champaign, IL (2016). [Google Scholar]
  101. V.A. Mozhayskiy and A.I. Krylov, ezSpectrum, http://iopenshell.usc.edu/downloads [Google Scholar]
  102. S. Amayri et al. J Solid State Chem 178 (2005) 567–577. [CrossRef] [Google Scholar]
  103. A. Ikeda et al, Inorg. Chem. (2007), 46, 4212−4219. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.