Open Access
Issue
EPJ Web Conf.
Volume 154, 2017
3rd International Conference on Theoretical and Experimental Studies in Nuclear Applications and Technology (TESNAT 2017)
Article Number 01029
Number of page(s) 21
DOI https://doi.org/10.1051/epjconf/201715401029
Published online 29 September 2017
  1. J. Višňák, L. Sobek, EPJ Web of Conferences 128, 02002 (2016). [CrossRef] [EDP Sciences]
  2. R. J. Lakowicz, Principles of Fluorescence Spectroscopy, (Third Edition, Springer), (2006).
  3. J. Višňák, Master Thesis, FNSPE, Czech Technical University (2010) (In Czech).
  4. C. Moulin, I. Laszak, V. Moulin, and C. Tondre: Appl Spectrosc 52 (1998) 528. [CrossRef]
  5. J. Višňák, Bachelor project, FNSPE, Czech Technical University in Prague (2008) (In Czech).
  6. G. Meinrath, Aquatic Chemistry of Uranium, Review Focusing on Aspects of Environmental Chemistry, (Freiberg On-line Geoscience Vol.1), (1998).
  7. J. Višňák, J. Bok, A. Vetešník, Annual report of the Department of Nuclear Chemistry 2008-2010, Prague. http://www.jaderna-chemie.cz/data/documents/vyrocni_zpravy/AR2008-2010.pdf (page 23).
  8. B. Rasmus: PARAFAC. Tutorial & applications. Chemometrics Group, Food Technology, Royal Veterninary & Agricultural University. Rolighedsvej 30, III, DK-1958 Frederiksberg C, Denmark, http://www.models.kvl.dk/~rasmus/presentations/parafac_tutorial/paraf.htm.
  9. R. A. Harshman, (1970). UCLA Working Papers in Phonetics, 16, 84 pp. (University Microfilms, Ann Arbor, No. 10,085).
  10. R. Harshman, M. Lundy, The PARAFAC model for three-way factor analysis and multidimensional scaling, In Research methods for multimode data analysis, chapter 5, pages 122–215. Praeger, New York (1984).
  11. Ch. F. Beckmann, S. M. Smith : Tensorial Extensions of Independent Component Analysis for Multi-Subject FMRI Analysis. FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain) Technical Report TR04CB1, Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, UK, http://www.fmrib.ox.ac.uk/analysis/techrep/tr04cb1/tr04cb1/tr04cb1.html.
  12. R. Harshman, and M. Lundy, (1994). Comput Stat Data An, 18:39–72. [CrossRef]
  13. Y. Yokoyama, M. Moriyasu, S. Ikeda, J. inorg, nucl. Chem., (1976), 38, pp. 132%1333. Pergamon Press. [CrossRef]
  14. H. D. Burrows, S. J. Formosinho, M. G. Miguel, F. P. Coelho, J. Chem. Soc., Faraday Trans. 1, (1976),72, 163–171, 10.1039/F19767200163. [CrossRef]
  15. R. Matsushima, S. Sakuraba, J. Am. Chem. Soc., (1971), 93 (26), pp 7143–7145, DOI: 10.1021/ja00755a004. [CrossRef]
  16. H. D. Burrows, S. J. Formosinho. J. Chem. Educ, (1978), 55 (2) p 125., DOI 10.1021/ed055p125. [CrossRef]
  17. M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M G. M. Miguel, J. Chem. Soc., Faraday Trans. I, (1989), 85 (8), 2625–2634. [CrossRef]
  18. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC16 (2016), written by H. J. Aa. Jensen, R. Bast, T. Saue, and L. Viss cher, with contributions from V. Bakken, K. G. Dyall, S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (see http://www.diracprogram.org).
  19. L. H. Jones, Spectrochim Acta, (1958), 10, pp.395–403. Pergamon Press Ltd., London.
  20. Bartecki A., On the Theory of Uranyl Compounds in Solutions, in Theory and Structure of Complex Compounds, Proceedings of the Symposium held at Wroclaw, s. 233–247, (1964). [CrossRef]
  21. Ch. Görller-Walrand, S. De Houwer, L. Fluyt, K. Binnemans, Phys. Chem. Chem. Phys., (2004), 6, 3292–3298. [CrossRef]
  22. V. E. Jackson, R. Craciun, D. A. Dixon, K. A. Peterson, W. A. de Jong, J. Phys. Chem. A, 112, 4095–4099, (2008). [CrossRef]
  23. J. Višňák, J. Kuba, A. Vetešník, J. Bok, V. Sladkov UO2(2+) - XO4(2-) - H2O TRLFS and spectrophotometric speciation study (X=S, Se) In Lectures of colloquium on Radioanalytical methods, IAA 14, Edited by Jiří Mizera, Ioannes Marcus Marci Spectroscopic Society - IMMSS, ISBN 978-80-905704-4-3 (2014).
  24. Z. Wang, J. M. Zachara, W. Yantasee, P. Gassman, Ch. Liu, Environ. Sci. Technol., 38, 5591–5597 (2004). [CrossRef] [PubMed]
  25. M. Gal, P.L. Goggin, J. Mink, Spectrochim. Acta 48A (1992).
  26. J. T. Bell, R. E. Biggers, J. Mol Spectrosc, 25, 312 (1986). [CrossRef]
  27. https://www.hzdr.de/db/Cms?pOid=14407%20pNid=334
  28. Molecular Spectroscopy and Chemical Dynamics, lecture text, Spring Term 2013, University of Basel, Department of Chemistry, http://www.chemie.unibas.ch/~willitsch/vtv_files/normal_modes_S.pdf.
  29. R. Steudtner, personal communication at HZDR, 2017.
  30. C. Eckart, G. Young, (1936). 1 (3): 211–8. doi:10.1007/ BF02288367.
  31. M. R. Hestenes, (1958). J Soc Ind Appl Math. 6 (1): 51–90. JSTOR 2098862. MR 0092215. doi:10.1137/0106005. [CrossRef]
  32. G. H. Golub, W. Kahan, (1965). 2 (2): 205–224. JSTOR 2949777. MR 0183105. doi: 10.1137/0702016.
  33. D. Vopálka et al, Report to the final control day with respect to the contract between Radioactive Waste Repository Authority (RAWRA) and Czech Technical University (FNSPE) (Phase 4) (n. 4007016), Prague, July 2009 (Chapter 2.2 (author: A. Vetešník), Chapter 2.3 (J. Višňák), Chapter 3 (J. Šebera)) (In Czech).
  34. T. W. Anderson, An Introduction to Multivariate Statistical Analysis, (Wiley, New York, 1958).
  35. K.V. Mardia, J.T. Kent, J.M. Bibby (1979). Multivariate Analysis. Academic Press,. ISBN 0124712525. (M.A. level “likelihood” approach).
  36. R. A. Johnson, D. W. Wichern, (2007). Applied Multivariate Statistical Analysis (Sixth ed.). Prentice Hall. ISBN 978-0-13-187715-3.
  37. J. Pfanzagl, with the assistance of R. Hamböker (1994). Parametric statistical theory. Walter de Gruyter, Berlin, DE. pp. 207–208. ISBN 3-11-013863-8.
  38. L. J. Savage, (1976). The Annals of Statistics. 4 (3): 441–500. JSTOR 2958221. doi:10.1214/aos/1176343456. [CrossRef]
  39. J. W. Pratt, (1976). The Annals of Statistics. 4 (3): 501–514. JSTOR 2958222. doi:10.1214/aos/1176343457. [CrossRef]
  40. A. Hald, (1999). Stat Sci. 14 (2): 214–222. JSTOR 2676741. doi:10.1214/ss/1009212248. [CrossRef]
  41. J. Aldrich, (1997). 12 (3): 162–176. MR 1617519. doi:10.1214/ss/1030037906.
  42. M. Hazewinkel, ed. (2001), Maximum-likelihood method, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4.
  43. O. Y. Rodionova, A. L. Pomerantsev, Russ Chem Rev 75 (4) 271–287 (2006). [CrossRef]
  44. E. H. Moore, (1920). B Am Math Soc. 26 (9): 394–395. doi:10.1090/S0002-9904-1920-03322-7.
  45. A. Bjerhammar, (1951). Application of calculus of matrices to method of least squares; with special references to geodetic calculations. Trans. Roy. Inst. Tech. Stockholm. 49.
  46. R. Penrose, (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society. 51: 406–413. doi:10.1017/S0305004100030401. [NASA ADS] [CrossRef] [MathSciNet]
  47. G. H. Golub, F. V.L. Charles (1996). Matrix computations (3rd ed.). Baltimore: Johns Hopkins. pp. 257–258. ISBN 0-8018-5414-8.
  48. A. Ben-Israel, T. N.E. Greville (2003). Generalized Inverses. Springer-Verlag. ISBN 0-387-00293-6.
  49. J. Bečvář: Linear Algebra, matfyzpress, Praha 2002, chap. „Pseudoinverzní homomorfismy a matice“, 414–431 (In Czech).
  50. R. G. Brereton, Applied Chemometrics for Scientists, University of Bristol, Wiley, 2007, ISBN-13: 978-0-470-01686-2.
  51. J. N. Miller, J. V. Miller, Statistics and Chemometrics for Analytical Chemistry, Pearson Edu. L., Sixth edition 2010, ISBN: 978-0-273-73042-2.
  52. J. Franck, (1926). T Faraday Soc. 21: 536–542. doi:10.1039/tf9262100536. [CrossRef]
  53. E. Condon, (1928). Phys Rev 32: 858–872. doi:10.1103/PhysRev.32.858. [NASA ADS] [CrossRef]
  54. A. S. Coolidge, H. M. James, R. D. Present, (1936). J Chem Phys 4: 193–211. doi:10.1063/1.1749818. [CrossRef]
  55. P. W. Atkins, R. S. Friedman (1999). Molecular Quantum Mechanics. Oxford: Oxford University Press. ISBN 0-19-855947-X (page 386). [EDP Sciences]
  56. J.-L. Chang, J. Mol. Spectrosc., 232, 102–104, (2005). [CrossRef]
  57. R. Islampour, M. Dehestani, S. H. Lin, J. Mol. Spectrosc. 194, 179–184 (1999). [CrossRef] [PubMed]
  58. P.-A. Malmqvist, N. Forsberg, Chem. Phys., 228, 227–240, (1998). [CrossRef]
  59. F. Duschinsky, Acta Physicochim. USRR 7, 551 (1937).
  60. P. T. Ruhoff, Ph.D. Thesis, Odense University, 1995.
  61. I. J. Ozkan, Mol. Spec. (1990), 139, 147–162. [CrossRef]
  62. A. W. Adamson, (1976), Adv Chem, 150 (Chap. 12). 128-148. ISBN13: 9780841202818, 10.1021/ba-1976-0150.ch012.
  63. http://www.theanalysisfactor.com/factor-analysis-how-many-factors/
  64. http://ba-finance-2013.blogspot.no/2012/09/scree-plots-interpretation-and.html
  65. LabSpec, http://www.horiba.com/scientific/products/raman-spectroscopy/software/
  66. R. Steudtner, H. Neubert, V. Brendler, B. Drobot, Report zum Analysenauftrag „Nachweis und die Charakterisierung von Uran-Spezies in wässrigen Umweltproben“, 2014, Institut für Bergbau der TU Bergakademie Freiberg (in Absprache mit Wismut GmbH).
  67. Z. Wang, J. M. Zachara, W. Yantasee, P. L. Gassman, C. X. Liu, A. G. Joly. (2004) Environmental Science & Technology 38: 5591–5597. [CrossRef] [PubMed]
  68. T.J. Wolery (1992). EQ3/6, A software package for the geochemical modelling of aqueous systems. UCRL-MA-110662 Part I, Lawrence Livermore National Laboratory.
  69. D.L. Parkhurst, C.A.J. Appelo, (2013), Description of input and examples for PHREEQC version 3--A computer program for speciation, batch- reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06/a43.
  70. R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. A. Palmer, M.H. Rand, (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Chemical Thermodynamics Vol. 5 (OECD Nuclear Energy Agency, ed.), Elsevier, Amsterdam.
  71. Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S., Nitsche, H. (2001) Radiochim. Acta 89: 511–518. [CrossRef]
  72. W. Dong, S. Brooks, (2006) Environ. Sci. Technol. 40: 4689–4695. [CrossRef] [PubMed]
  73. A.A.A. Osman, (2014) Ph.D. thesis, TU Dresden, 124pp.
  74. C. Götz, G. Geipel, G. Bernhard, (2011) J. Radioanal. Nucl. Chem. 287:961–969. [CrossRef]
  75. S. V. Lotnik, L.A. Khamidullina, V.P. Kazakov, (2003) Radiochemistry 45:499–502. [CrossRef]
  76. J. Višňák, L. Sobek, Quasirelativistic Quantum Chemical calculations of Uranyl(VI)-Sulfates Spectroscopic properties, in Department of Nuclear Chemistry Annual Report 2015–2016.
  77. J. Višňák, L. Sobek L. (2017), MetaCentrum Annual. Report, in publication.
  78. TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
  79. X. Cao, M. Dolg, J. Molec. Struct., 673, 203–209 (2004). [CrossRef]
  80. M. Dolg, in Proceedings, Second Edition, J. Grotendorst (Ed.), John von Neumann Institute for Computing, Julich, NIC Series, 3, pp. 507–540 (2000).
  81. K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs; Chem. Phys. Letters 242, 652 (1995). [CrossRef]
  82. A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys., 97, 2571 (1992). [CrossRef]
  83. F. Weigend et al, Chem. Phys. Letters 294, 143 (1998). [CrossRef]
  84. P. Hohenberg, W. Kohn, Phys. Rev. 136 (3B): B864–B871, (1964). [CrossRef] [MathSciNet]
  85. W. Kohn, L. J. Sham, Phys. Rev. 140 (4A): A1133-A1138 (1965). [CrossRef] [MathSciNet]
  86. A. ysSzabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill Publishing Company, New York, (1989).
  87. E. Runge, E. K. U. Gross, Phys. Rev. Lett. 52 (12): 997–1000 (1984). [CrossRef]
  88. M. Petersilka, U. J. Gossmann; E.K.U. Gross, Phys. Rev. Lett. 76 (8): 1212–1215 (1996). [CrossRef] [PubMed]
  89. C. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford Graduate Texts), Oxford University Press, (2012).
  90. A. D. Becke, J. Chem. Phys. 98 (7): 5648–5652 (1993). [NASA ADS] [CrossRef]
  91. S. Grimme, J. Antony, S. Ehrlich, Krieg, J. Chem. Phys, 132, 154104 (2010). [NASA ADS] [CrossRef] [PubMed]
  92. G. Schaftenaar and J.H. Noordik, J. Comput.-Aided Mol. Design, 14, 123–134, (2000). [CrossRef] [EDP Sciences]
  93. O. Treutler, R. Ahlrichs, J Chem Phys 102: 346 (1995) [CrossRef]
  94. R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel, Chem. Phys. Lett. 162: 165 (1989) [NASA ADS] [CrossRef]
  95. F. Weigend, F. Furche, R. Ahlrichs, J. Chem. Phys. 119, 12753 (2003). [CrossRef]
  96. S. Tsushima, Y. Uchida, T. Reich, Chem Phys Lett 357 (2002) 73–77. [CrossRef]
  97. A. O. Tirler, T. S. Hofer, Dalton Trans., (2016), 45, 4983, DOI: 10.1039/c5dt04718h. [CrossRef] [PubMed]
  98. A. Vetešník, J. Višňák, MyExpFit V4 program.
  99. MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States.
  100. Wolfram Research, Inc., Mathematica, Version 10.4, Champaign, IL (2016).
  101. V.A. Mozhayskiy and A.I. Krylov, ezSpectrum, http://iopenshell.usc.edu/downloads
  102. S. Amayri et al. J Solid State Chem 178 (2005) 567–577. [CrossRef]
  103. A. Ikeda et al, Inorg. Chem. (2007), 46, 4212−4219. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.