Open Access
EPJ Web Conf.
Volume 156, 2017
Regional Conference on Nuclear Physics (RCNP 2016)
Article Number 00011
Number of page(s) 7
Published online 23 October 2017
  1. J.F.S., Bitencourt, S.H., Tatumi, Synthesis and thermoluminescence properties of Mg2+doped nano structured aluminium oxide. Phys. Procedia 2, 501–514, (2010).
  2. J. K. Rieke, and J. Daniels, Thermoluminescence Studies of Aluminium Oxide. J. Phys. Chem. 61(5), 629–633, (1957). [CrossRef]
  3. A.A. Kaplyankii, A.B. Kulinkin, A.B. Kutsenko, S.P. Feofilov, R.I. Zakharchenya, T.N. Vasilevskaya, Optical spectra of triply-charged rare-earth ions in polycrystalline corundum. Phys. Sol. State, 40, 1310–1316, (1998). [CrossRef]
  4. N. Can, P.D. Townsend, and D.E. Hole, Enhancement of luminescence by pulse laser annealing of ion-implanted europium in sapphire and silica. J. Appl. Phys. 78, 6737–6744, (1995). [CrossRef]
  5. J. Azorin, Preparation methods of thermoluminescent materials for dosimetric applications: An overview. Appl. Radiat. Isot. 83, 187–191, (2002). [CrossRef]
  6. D.V, Barros, S.M. de Azevedo Walter, M. Khoury and Pedro Linhares Filho, Combustion synthesis: A suitable method to prepare Al2O3 doped materials for thermoluminescent dosimetry. Radiat. Meas. 43, 345–348, (2008). [CrossRef]
  7. G. Hirata, N. Peres, M. Tajeda, J.A. Gonzalez-Ortega, and J. McKittrick, Luminescence study in Eu-doped aluminium oxide phosphors. Opt. Mater. 27, 1311–1315, (2005). [CrossRef]
  8. V.SM. Barros, W.M., de Azevedo, H.J. Khoury, M.E. A. Andrade, and P. Linhares Filho, Thermoluminescence study of aluminium oxide doped with terbium and thulium. Radiat. Meas. 45, 435–437. (2010). [CrossRef]
  9. B.N. Lakshminarasappa, J.R. Jayaramaiah, & B.M. Nagabhushana, Thermoluminescence of combustion synthesized yttrium oxide, Powder Technol. 217, 7–10, (2012). [CrossRef]
  10. A. Sharma, A. Rani, A. Singh, O.P. Modi, & G.K. Gupta, Synthesis of alumina powder by the urea-glycine-nitrate combustion process: a mixed fuel approach to nanoscale metal oxides, Appl Nanosci. 4(3), 315–323, (2014). [CrossRef]
  11. R.K. Lenka, T. Mahata, P.K. Sinha, & A.K. Tyagi, Combustion synthesis of gadolinia- doped ceria using glycine and urea fuels, J. Alloys Compd. 466, 326–329. (2008). [CrossRef]
  12. R. Garcia, and G.A. Hirata, New combustion synthesis technique for the production of (InxGa1-x)2O3 powders: Hydrazine/metal nitrate method, 16, 1059–1065, (2001).
  13. B.N. Lakshminarasappa, J.R. Jayaramaiah, & B.M. Nagabhushana, Thermoluminescence of combustion synthesized yttrium oxide, Powder Technol. 217, 7–10, (2012). [CrossRef]
  14. M.C. Gardey Merino, G.E. Lascalea, L.M. Sanchez, P.G. Vazquez, E.D. Cabanillas, & D.G. Lamas, Nanostructured aluminium oxide powders obtained by aspartic acid- nitrate gel-combustion routes, J. Alloys Compd. 495(2), 578–582, (2010). [CrossRef]
  15. L.C. Yong, H. Wagiran, A.K. Ismail. Thermoluminescence Performance of Carbon- doped Aluminium Oxide for Dose Measurement by Various Preparation Methods, Jurnal Teknologi. 62: 3, 109–113, (2013).
  16. Mehta, S.K., Sengupta, S., b. Al2O3 phosphor for Thermoluminescence dosimetry. Health Phys. 31, 176–177. (1976) [PubMed]
  17. Osvay. Ma., Tamas BIRO., 1980. Aluminium oxide in TL Dosimetry. Nucl. Instr. Meth, 175, 60–61. [CrossRef]
  18. Lapraz, D., P. Iacconi, D. Daviller, and B. Guilhot. 1991. Thermostimulated Luminescence and Fluorescence of Alpha- Al2O3:Cr3+ Samples (Ruby). Phys. Status Solid (A). 126, 521–531. [CrossRef]
  19. Ravichandran, A.T., Catherine, K., Pushpa, S., Ravichandran, K., Karthika, K., Nagabhushana, B.M., Mantha, S., and Swaminathan, K. (2014). Effect of Al doping on the structural and optical properties of ZrO2 nanopowders synthesized using solution combustion method. Superlattices and Microstructures . 75, 533–542. [CrossRef]
  20. N.M. Noor, M. Hussein, T. Kadni, D.A. Bradley, A. Nisbet, Characterizationof Ge- doped optical fibres for MV radiotherapydosimetry. Radiat.Phys.Chem. 98, 33–34 (2014). [CrossRef]
  21. C. L. Ong., S., Kandaiya, H. T., Kho & M. T. Chong, Segments of a commercial Gedoped optical fiber as a thermoluminescent dosimeter in radiotherapy. Radiation Measurements. 44, 158–162, (2009) [CrossRef]
  22. F.O. Ogundare, S.A. Ogundele, M.L. Chithambo, & M.K. Fasasi, Thermoluminescence characteristics of the main glow peak in a -Al 2 O 3: C exposed to low environmental-like radiation doses, J. Lumin. 139, 143–148, (2013). [CrossRef]
  23. S. A., Pardhi, Nair, G. B., R., Sharma, & S. J. Dhoble, Investigation of thermoluminescence and electron-vibrational interaction parameters in SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors. Journal of Luminescence, 187, 492–498. (2017). [CrossRef]
  24. S. P Puppalwar, S. J Dhoble, N. S Dhoble, & A. Kumar, Nuclear Instruments and Methods in Physics Research B Luminescence characteristics of Li 2 NaBF6: Cu phosphor, 274, 167–171, (2012). [CrossRef]
  25. M.E.A. Andrade, W.M. Azevedo, V.S.M. Barros, & H.J. Khoury, Thermoluminescence of aluminum oxide co-doped with terbium and thulium obtained via combustion synthesis, Radiat. Meas. 46(12), 1474–1476, (2011). [CrossRef]
  26. J.V. Soares, C.F. Gugliotti, Y.S. Kawashima, S.H. Tatumi, & J.C.R. Mittani, Thermoluminescence and optically stimulated luminescence characteristics of Al2O3 doped with Tb, Radiat. Meas. 71, 78–80, (2014). [CrossRef]
  27. E., Pekpak, A., Yilmaz, and G., Ozbayoglu, An Overview on Preparation and thermoluminescence Characterization of Lithium Borates for Dosimetric Use. The Open Mineral Processing Journal. 3, 14–24 (2010). [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.