Open Access
Issue
EPJ Web Conf.
Volume 156, 2017
Regional Conference on Nuclear Physics (RCNP 2016)
Article Number 00011
Number of page(s) 7
DOI https://doi.org/10.1051/epjconf/201715600011
Published online 23 October 2017
  1. J.F.S., Bitencourt, S.H., Tatumi, Synthesis and thermoluminescence properties of Mg2+doped nano structured aluminium oxide. Phys. Procedia 2, 501–514, (2010). [Google Scholar]
  2. J. K. Rieke, and J. Daniels, Thermoluminescence Studies of Aluminium Oxide. J. Phys. Chem. 61(5), 629–633, (1957). [CrossRef] [Google Scholar]
  3. A.A. Kaplyankii, A.B. Kulinkin, A.B. Kutsenko, S.P. Feofilov, R.I. Zakharchenya, T.N. Vasilevskaya, Optical spectra of triply-charged rare-earth ions in polycrystalline corundum. Phys. Sol. State, 40, 1310–1316, (1998). [CrossRef] [Google Scholar]
  4. N. Can, P.D. Townsend, and D.E. Hole, Enhancement of luminescence by pulse laser annealing of ion-implanted europium in sapphire and silica. J. Appl. Phys. 78, 6737–6744, (1995). [CrossRef] [Google Scholar]
  5. J. Azorin, Preparation methods of thermoluminescent materials for dosimetric applications: An overview. Appl. Radiat. Isot. 83, 187–191, (2002). [CrossRef] [Google Scholar]
  6. D.V, Barros, S.M. de Azevedo Walter, M. Khoury and Pedro Linhares Filho, Combustion synthesis: A suitable method to prepare Al2O3 doped materials for thermoluminescent dosimetry. Radiat. Meas. 43, 345–348, (2008). [CrossRef] [Google Scholar]
  7. G. Hirata, N. Peres, M. Tajeda, J.A. Gonzalez-Ortega, and J. McKittrick, Luminescence study in Eu-doped aluminium oxide phosphors. Opt. Mater. 27, 1311–1315, (2005). [CrossRef] [Google Scholar]
  8. V.SM. Barros, W.M., de Azevedo, H.J. Khoury, M.E. A. Andrade, and P. Linhares Filho, Thermoluminescence study of aluminium oxide doped with terbium and thulium. Radiat. Meas. 45, 435–437. (2010). [CrossRef] [Google Scholar]
  9. B.N. Lakshminarasappa, J.R. Jayaramaiah, & B.M. Nagabhushana, Thermoluminescence of combustion synthesized yttrium oxide, Powder Technol. 217, 7–10, (2012). [CrossRef] [Google Scholar]
  10. A. Sharma, A. Rani, A. Singh, O.P. Modi, & G.K. Gupta, Synthesis of alumina powder by the urea-glycine-nitrate combustion process: a mixed fuel approach to nanoscale metal oxides, Appl Nanosci. 4(3), 315–323, (2014). [CrossRef] [Google Scholar]
  11. R.K. Lenka, T. Mahata, P.K. Sinha, & A.K. Tyagi, Combustion synthesis of gadolinia- doped ceria using glycine and urea fuels, J. Alloys Compd. 466, 326–329. (2008). [CrossRef] [Google Scholar]
  12. R. Garcia, and G.A. Hirata, New combustion synthesis technique for the production of (InxGa1-x)2O3 powders: Hydrazine/metal nitrate method, 16, 1059–1065, (2001). [Google Scholar]
  13. B.N. Lakshminarasappa, J.R. Jayaramaiah, & B.M. Nagabhushana, Thermoluminescence of combustion synthesized yttrium oxide, Powder Technol. 217, 7–10, (2012). [CrossRef] [Google Scholar]
  14. M.C. Gardey Merino, G.E. Lascalea, L.M. Sanchez, P.G. Vazquez, E.D. Cabanillas, & D.G. Lamas, Nanostructured aluminium oxide powders obtained by aspartic acid- nitrate gel-combustion routes, J. Alloys Compd. 495(2), 578–582, (2010). [CrossRef] [Google Scholar]
  15. L.C. Yong, H. Wagiran, A.K. Ismail. Thermoluminescence Performance of Carbon- doped Aluminium Oxide for Dose Measurement by Various Preparation Methods, Jurnal Teknologi. 62: 3, 109–113, (2013). [Google Scholar]
  16. Mehta, S.K., Sengupta, S., b. Al2O3 phosphor for Thermoluminescence dosimetry. Health Phys. 31, 176–177. (1976) [PubMed] [Google Scholar]
  17. Osvay. Ma., Tamas BIRO., 1980. Aluminium oxide in TL Dosimetry. Nucl. Instr. Meth, 175, 60–61. [CrossRef] [Google Scholar]
  18. Lapraz, D., P. Iacconi, D. Daviller, and B. Guilhot. 1991. Thermostimulated Luminescence and Fluorescence of Alpha- Al2O3:Cr3+ Samples (Ruby). Phys. Status Solid (A). 126, 521–531. [CrossRef] [Google Scholar]
  19. Ravichandran, A.T., Catherine, K., Pushpa, S., Ravichandran, K., Karthika, K., Nagabhushana, B.M., Mantha, S., and Swaminathan, K. (2014). Effect of Al doping on the structural and optical properties of ZrO2 nanopowders synthesized using solution combustion method. Superlattices and Microstructures . 75, 533–542. [CrossRef] [Google Scholar]
  20. N.M. Noor, M. Hussein, T. Kadni, D.A. Bradley, A. Nisbet, Characterizationof Ge- doped optical fibres for MV radiotherapydosimetry. Radiat.Phys.Chem. 98, 33–34 (2014). [CrossRef] [Google Scholar]
  21. C. L. Ong., S., Kandaiya, H. T., Kho & M. T. Chong, Segments of a commercial Gedoped optical fiber as a thermoluminescent dosimeter in radiotherapy. Radiation Measurements. 44, 158–162, (2009) [CrossRef] [Google Scholar]
  22. F.O. Ogundare, S.A. Ogundele, M.L. Chithambo, & M.K. Fasasi, Thermoluminescence characteristics of the main glow peak in a -Al 2 O 3: C exposed to low environmental-like radiation doses, J. Lumin. 139, 143–148, (2013). [CrossRef] [Google Scholar]
  23. S. A., Pardhi, Nair, G. B., R., Sharma, & S. J. Dhoble, Investigation of thermoluminescence and electron-vibrational interaction parameters in SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors. Journal of Luminescence, 187, 492–498. (2017). [CrossRef] [Google Scholar]
  24. S. P Puppalwar, S. J Dhoble, N. S Dhoble, & A. Kumar, Nuclear Instruments and Methods in Physics Research B Luminescence characteristics of Li 2 NaBF6: Cu phosphor, 274, 167–171, (2012). [CrossRef] [Google Scholar]
  25. M.E.A. Andrade, W.M. Azevedo, V.S.M. Barros, & H.J. Khoury, Thermoluminescence of aluminum oxide co-doped with terbium and thulium obtained via combustion synthesis, Radiat. Meas. 46(12), 1474–1476, (2011). [CrossRef] [Google Scholar]
  26. J.V. Soares, C.F. Gugliotti, Y.S. Kawashima, S.H. Tatumi, & J.C.R. Mittani, Thermoluminescence and optically stimulated luminescence characteristics of Al2O3 doped with Tb, Radiat. Meas. 71, 78–80, (2014). [CrossRef] [Google Scholar]
  27. E., Pekpak, A., Yilmaz, and G., Ozbayoglu, An Overview on Preparation and thermoluminescence Characterization of Lithium Borates for Dosimetric Use. The Open Mineral Processing Journal. 3, 14–24 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.