Open Access
Issue
EPJ Web Conf.
Volume 168, 2018
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology
Article Number 03003
Number of page(s) 5
Section Quantum Gravity
DOI https://doi.org/10.1051/epjconf/201816803003
Published online 09 January 2018
  1. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001]. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP 0608, 045 (2006) [hep-th/0605073]. [CrossRef] [Google Scholar]
  3. C. Holzhey, F. Larsen and F. Wilczek, “Geometric and renormalized entropy in conformal field theory,” Nucl. Phys. B 424, 443 (1994) [hep-th/9403108]. [CrossRef] [Google Scholar]
  4. P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat. Mech. 0406, P06002 (2004) [hep-th/0405152]. [Google Scholar]
  5. P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory,” J. Phys. A 42, 504005 (2009) [arXiv:0905.4013 [cond-mat.stat-mech]]. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Banados, “Three-dimensional quantum geometry and black holes,” AIP Conf. Proc. 484, 147 (1999) [hep-th/9901148]. [CrossRef] [Google Scholar]
  7. M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett. 69, 1849 (1992) [hep-th/9204099]. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, “Geometry of the (2+1) black hole,” Phys. Rev. D 48, 1506 (1993) M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli: [Phys. Rev. D 88, 069902 (2013)] [gr-qc/9302012]. [CrossRef] [MathSciNet] [Google Scholar]
  9. E.Ó Colgáin and H. Yavartanoo, “Banados and SUSY: on supersymmetry and minimal surfaces of locally AdS3 geometries,” Class. Quant. Grav. 34, no. 9, 095008 (2017) [arXiv:1610.05638 [hep-th]]. [CrossRef] [Google Scholar]
  10. H. Lin, O. Lunin and J. M. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 0410, 025 (2004) [hep-th/0409174]. [CrossRef] [Google Scholar]
  11. R. Harvey and H. B. Lawson, Jr., “Calibrated geometries,” Acta Math. 148, 47 (1982). [CrossRef] [Google Scholar]
  12. I. Bakhmatov, N. S. Deger, J. Gutowski, E.Ó Colgáin and H. Yavartanoo, “Calibrated Entanglement Entropy,” JHEP 1707, 117 (2017) [arXiv:1705.08319 [hep-th]]. [CrossRef] [Google Scholar]
  13. J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] [hep-th/9711200]. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. P. Sorokin, “Superbranes and superembeddings,” Phys. Rept. 329, 1 (2000) [hep-th/9906142]. [CrossRef] [Google Scholar]
  15. R. Courant, D. Hilbert, “Methods of Mathematical Physics”, Vol. II, John Wiley (1962) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.