Open Access
Issue
EPJ Web Conf.
Volume 168, 2018
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology
Article Number 07003
Number of page(s) 6
Section Gravity in String Theory
DOI https://doi.org/10.1051/epjconf/201816807003
Published online 09 January 2018
  1. G. ’t Hooft, “Dimensional reduction in quantum gravity,” Salamfest 1993:0284-296 [grqc/9310026]. [Google Scholar]
  2. L. Susskind, “The World as a hologram,” J. Math. Phys. 36, 6377 (1995) [hep-th/9409089]. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] [hep-th/9711200]. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 505 (1998) [hep-th/9803131]. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Kastor, S. Ray and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes,” Class. Quant. Grav. 26, 195011 (2009) [arXiv:0904.2765 [hep-th]]. [CrossRef] [MathSciNet] [Google Scholar]
  6. B. P. Dolan, “The cosmological constant and the black hole equation of state,” Class. Quant. Grav. 28, 125020 (2011) [arXiv:1008.5023 [gr-qc]]. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. P. Dolan, “Pressure and volume in the first law of black hole thermodynamics,” Class. Quant. Grav. 28, 235017 (2011) [arXiv:1106.6260 [gr-qc]]. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. P. Dolan, “Black holes and Boyle’s law—The thermodynamics of the cosmological constant,” Mod. Phys. Lett. A 30, no. 03n04, 1540002 (2015) [arXiv:1408.4023 [gr-qc]]. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Kubiznak, R. B. Mann and M. Teo, “Black hole chemistry: thermodynamics with Lambda,” Class. Quant. Grav. 34, no. 6, 063001 (2017) [arXiv:1608.06147 [hep-th]]. [CrossRef] [Google Scholar]
  10. V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commun. Math. Phys. 208, 413 (1999) [hep-th/9902121]. [CrossRef] [Google Scholar]
  11. M. Henningson and K. Skenderis, “The Holographic Weyl anomaly,” JHEP 9807, 023 (1998) [hep-th/9806087]. [CrossRef] [Google Scholar]
  12. S. de Haro, S. N. Solodukhin and K. Skenderis, “Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence,” Commun. Math. Phys. 217, 595 (2001) [hepth/0002230]. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant. Grav. 19, 5849 (2002) [hep-th/0209067]. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Casini, M. Huerta and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 1105, 036 (2011) [arXiv:1102.0440 [hep-th]]. [CrossRef] [Google Scholar]
  15. B. Ahn, K. Kim and S. Hyun, in progress. [Google Scholar]
  16. E. P. Verlinde, “Emergent Gravity and the Dark Universe,” SciPost Phys. 2, no. 3, 016 (2017) [arXiv:1611.02269 [hep-th]]. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.