Open Access
Issue
EPJ Web Conf.
Volume 170, 2018
ANIMMA 2017 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 09001
Number of page(s) 6
Section Environmental and medical sciences
DOI https://doi.org/10.1051/epjconf/201817009001
Published online 10 January 2018
  1. H. Paganetti, Proton Therapy Physics. CRC Press, 2011 [CrossRef] [Google Scholar]
  2. ICRP, The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4), 2007. [Google Scholar]
  3. S. B. Jia, M. H. Hadizadeha, A. A. Mowlavib and M. E. Loushab, Evaluation of energy deposition and secondary particle production in proton therapy of brain using a slab head phantom. Reports of Practical Oncology & Radiotherapy Volume 19, Issue 6, November-December 2014, Pages 376–384 [Google Scholar]
  4. M. R. Islam, Y. Zheng, T. L. Collums, J. M. Monson, S. Ahmad and E. R. Benton, Measurement ans simulation of secondary neutrons from uniform scanning proton beams in proton therapy. Radiation Measurements 96 (2017) 8–18 [CrossRef] [Google Scholar]
  5. Z. Riazi, H. Afarideh and R. Sadighi-Bonabi, Influence of ridge filter material on the beam efficiency and secondary neutron production in a proton therapy system. Z. Med. Phys. 22 (2012) 231–240 [CrossRef] [PubMed] [Google Scholar]
  6. Z. Vykydala, M. Králíka, J. Šolca, J. Vilímovskýb and V. Vondráčekb, Angular distribution of neutron spectral fluence around phantom irradiated with high energy protons. Radiation Measurements, Volume 92, September 2016, Pages 1–7 [CrossRef] [Google Scholar]
  7. X. Yan, U. Titt, A. M. Koehler and W. D. Newhauser, Measurement of neutron dose equivalent to proton therapy patients outside of the proton radiation field. Nuclear Instruments and Methods in Physics Research A 476 (2002) 429–434 [CrossRef] [Google Scholar]
  8. Y. C. Lin, C. C. Lee, T. C. Chao and H. Y. Tsai, Ambient neutron dose equivalent during proton therapy using wobbling scanning system : Measurements and calculations. Radiation Physics and Chemistry (2017) [Google Scholar]
  9. S. Trinkl, V. Mares, F. S. Englbrecht, J. J. Wilkens, M. Wielunski, K. Parodi, W. Rühm and M. Hillbrand, Systematic Out-of-field Secondary Neutron Spectrometry and Dosimetry in Pencil Beam Scanning Proton therapy. Med. Phys. 44 (5), May 2017 [CrossRef] [PubMed] [Google Scholar]
  10. M. R. Islam, T. L. Collums, Y. Zheng, J. Monson and E. R. Benton, Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy. Phys. Med. Biol. 58 (2013) 8235–8251 [CrossRef] [PubMed] [Google Scholar]
  11. M. R. Islam, Off-axis Neutron Study from a Uniform Scanning Proton Beam Using Monte Carlo Code FLUKA. Master thesis, Oklahoma State University, 2013 [Google Scholar]
  12. H. Jiang, B. Wang, X. G. Xu, H. D. Suit and H. Paganetti, Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Phys. Med. Biol. 50 (2005) 4337–4353 [CrossRef] [PubMed] [Google Scholar]
  13. J. Farah, F. Martinetti, R. Sayah, V. Lacoste, L. Donadille, F. Trompier, C. Nauraye, L. De Marzi, I. Vabre, S. Delacroix, Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations. Physics in Medicine and Biology, Volume 59, Number 11 (2014) 2747–2765 [CrossRef] [PubMed] [Google Scholar]
  14. S. M. Valle, G. Battistoni, V. Patera, D. Pinci, A. Sarti, A. Sciubba, E. Spiriti and M. Marafini, The MONDO Project: A secondary neutron tracker detector for particle therapy. Nuclear Instruments and Methods in Physics Research A (2016) [Google Scholar]
  15. M. Marafini, L. Gasparini, R. Mirabelli, D. Pinci, V. Patera, A. Sciubba, E. Spiriti, D. Stoppa, G. Traini and A. Sarti, MONDO: a neutron tracker for particle therapy secondary emission characterisation. Phys. Med. Biol. 62 (2017) 3299–3312 [CrossRef] [PubMed] [Google Scholar]
  16. T. J. Langford, E. J. Beise, H. Breuer, C. R. Heimbach, G. Ji and J. S. Nico, Development and characterization of a high sensitivity segmented Fast Neutron Spectrometer (FaNS-2). Journal of Instrumentation, Volume 11, January 2016 [CrossRef] [Google Scholar]
  17. Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303. IEEE Transactions on Nuclear Science 53 No. 1 (2006) 270–278. Nuclear Instruments and Methods in Physics Research A 835 (2016) 186–225. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. M. Kachel, D. Husson, S. Higueret, J. Taforeau and L. Lebreton, FastPixN, a new integrated pixel chip for a future fast version of the IRSN - Recoil Proton Telescope. Radiat Prot Dosimetry 214 Oct.; 161 (1-4):249–52. [CrossRef] [Google Scholar]
  19. N. Arbor, S. Higueret, H. Elazhar, R. Combe, P. Meyer, N. Dehaynin, F. Taupin, D. Husson, Real-time detection of fast and thermal neutrons in radiotherapy with CMOS sensors. Phys Med Biol. 2017 Mar 7;62(5):1920–1934. [CrossRef] [PubMed] [Google Scholar]
  20. N. Soppera, M. Bossant, E. Dupont, JANIS 4: An Improved Version of the NEA Java-based Nuclear Data Information System. Nuclear Data Sheets, Volume 120, June 2014, Pages 294–296. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.