Open Access
Issue
EPJ Web Conf.
Volume 175, 2018
35th International Symposium on Lattice Field Theory (Lattice 2017)
Article Number 14005
Number of page(s) 6
Section 14 Poster contributions
DOI https://doi.org/10.1051/epjconf/201817514005
Published online 26 March 2018
  1. A. Boriçi. “Computational methods for the fermion determinant and the link between overlap and domain wall fermions”. In: QCD and numerical analysis III. Proceedings, 3rd International Workshop, Edinburgh, UK, June 30-July 4, 2003 (2004), pp. 25–39. arXiv: hep-lat/0402035 [hep-lat]. [Google Scholar]
  2. A. Boriçi. “QCDLAB: Designing Lattice QCD Algorithms with MATLAB”. In: Journal of High Energy Physics 2006 (2006), p. 24. eprint: hep-lat/0610054. [Google Scholar]
  3. A. Boriçi. “Speeding up domain wall fermion algorithms using QCDLAB”. In: Journal of High Energy Physics 2007 (2007). Invited talk at Conference: Workshop on Domain Wall Fermions at Ten Years, p. 06. eprint: hep-lat/0703021. [Google Scholar]
  4. A. Boriçi. “Truncated overlap fermions”. In: Nucl.Phys.Proc.Suppl. 83 (2000), pp. 771–773. DOI: 10.1016/S0920-5632(00)91802-4. [Google Scholar]
  5. A. Boriçi. “Truncated Overlap Fermions: the link between Overlap and Domain Wall Fermions”. In: NATO ASI series C, Mathematical and physical sciences; 553 (1999). Prooced-ings, NATO Advanced Research Workshop on Lattice Fermions and Structure of the Vacuum,Dubna, Russia, October 5-9, pp. 42—52. eprint: hep-lat/9912040. [Google Scholar]
  6. A. Boriçi and A. Allkoci. “A fast minimal residual solver for overlap fermions”. In: Journal of High Energy Physics 2006 (2007), p. 27. eprint: hep-lat/0602015. [Google Scholar]
  7. A. Boriçi and P. De Forcrand. “Fast Krylov space methods for calculation of quark propagatorȍ. In: Physics computing ’94. (1994). Proceedings, 6th Joint EPS—APS International Conference, PC’94, Lugano, Switzerland, August 22-26, 1994, pp. 711–714. arXiv: hep-lat/9405001. [Google Scholar]
  8. N. Cundy et. al. “Numerical Methods for the QCD Overlap Operator:III. Nested Iterations”. In: Comput.Phys.Commun. 165.1 (1974), p. 22. [Google Scholar]
  9. V. Furman and Y. Shamir. “Axial symmetries in lattice QCD with Kaplan fermions”. In: Nuclear Physics B439.1 (1995), pp. 54–78. DOI: 10.1016/0550-3213(95)00031-M. [Google Scholar]
  10. D. Kaplan. “A Method for Simulating Chiral Fermions on the Lattice”. In: Phys.Lett. B228.1 (1992), p. 342. DOI: 10.1016/0370-2693(92)91112-M. [Google Scholar]
  11. R. Narayanan and H. Neuberger. “A construction of lattice chiral gauge theories”. In: Nucl.Phys. B443.1 (1995), p. 305. DOI: 10.1016/0550-3213(95)00111-5. [Google Scholar]
  12. R. Narayanan and H. Neuberger. “Infinitely many regulator fields for chiral fermions”. In: Phys.Lett. B302 (1993), pp. 62–69. DOI: 10.1016/0370-2693(93)90636-V. [Google Scholar]
  13. H. Neuberger. "Exactly massless quarks on the lattice". In: Phys. Lett. B417.1 (1998), p. 141. DOI: 10.1016/S0370-2693(97)01368-3. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Neuberger. “Overlap lattice Dirac operator and dynamical fermions”. In: Physical Review D60.6 (1999), p. 065006. [Google Scholar]
  15. D. Xhako and A. Boriçi. “Fast Algorithms for Simulating Chiral Fermions in U(1) Lattice Gauge Theory”. In: American Journal of Physics and Applications 2.2 (2014), pp. 67–72. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.