Open Access
Issue
EPJ Web Conf.
Volume 176, 2018
The 28th International Laser Radar Conference (ILRC 28)
Article Number 05012
Number of page(s) 4
Section Lidars applications in atmospheric structure and composition: Aerosols, clouds, trace gases
DOI https://doi.org/10.1051/epjconf/201817605012
Published online 13 April 2018
  1. National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. The National Academies Press, Washington, DC. [Google Scholar]
  2. National Research Council, 2010: When Weather Matters: Science and Service to Meet Critical Societal Needs. The National Academies Press, Washington, DC. [Google Scholar]
  3. National Research Council, 2012: Weather Services for the Nation: Becoming Second to None. The National Academies Press, Washington, DC. [Google Scholar]
  4. Wulfmeyer, V., R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlssel, J. Van Baelen, and F. Zus, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles Rev. Geophys., 53, 819–895. [CrossRef] [Google Scholar]
  5. Nehrir, A. R., Repasky, K. S., Carlsten, J. L., Obland, M. D., and Shaw, J. A., 2009: Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL). Journal of Atmospheric and Oceanic Technology, 26(4), 733–745. [CrossRef] [Google Scholar]
  6. Nehrir, A. R., Repasky, K. S., and Carlsten, J. L., 2011: Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) forWater Vapor Profiling in the Lower Troposphere. Journal of Atmospheric and Oceanic Technology, 28(2), 131– 147. [CrossRef] [Google Scholar]
  7. Nehrir, A. R., Repasky, K. S., and Carlsten, J. L., 2012: Micropulse water vapor differential absorption lidar: transmitter design and performance. Optics express, 20(22), 25137–51. [CrossRef] [PubMed] [Google Scholar]
  8. Repasky, K., Moen, D., Spuler, S., Nehrir, A., and Carlsten, J., 2013: Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere. Remote Sens., 5, 6241–6259. [CrossRef] [Google Scholar]
  9. Spuler, S. M., Repasky, K. S., Morley, B., Moen, D., Hayman, M., and Nehrir, A. R., 2015: Field deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmospheric Measurement Techniques, 8, 1073–1087. [CrossRef] [Google Scholar]
  10. Weckwerth, T. M., K. Weber, D. D. Turner, and S. M. Spuler, 2016: Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL). J. Atmospheric and Oceanic Technology, 33, 2353– 2372. [CrossRef] [Google Scholar]
  11. Hayman, M., S. Spuler, B. Morley, and E.W. Eloranta, 2015: Design of a low cost diode-laser-based high spectral resolution lidar. 27th International Laser Radar Conference, New York, NY, USA. [Google Scholar]
  12. Hayman, M., and S. Spuler, 2017: Demonstration of a low cost diode-laser-based high spectral resolution lidar (HSRL). 28th International Laser Radar Conference, Bucharest, Romania. [Google Scholar]
  13. Overton G, 2016: Lidar: Differential absorption lidar demands high-power, narrowband DBR sources Laser Focus World, 52(9), 14–15. [Google Scholar]
  14. Bösenberg, J., 1998: Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology. Applied Optics, 37(18), 3845– 3860. [CrossRef] [PubMed] [Google Scholar]
  15. Repasky, K., Spuler, S., and Hayman, M., 2017: Modeling of a Semiconductor Based Differential Absorption Lidar for Temperature Profiling in the Lower Troposphere AMS Annual Meeting, Seattle WA, USA 24-Jan-2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.