Open Access
Issue |
EPJ Web Conf.
Volume 176, 2018
The 28th International Laser Radar Conference (ILRC 28)
|
|
---|---|---|
Article Number | 07002 | |
Number of page(s) | 4 | |
Section | Lidar applications in ecosystems research | |
DOI | https://doi.org/10.1051/epjconf/201817607002 | |
Published online | 13 April 2018 |
- K. He, H. Huo, and Q. Zhang, Urban air pollution in China: Current status, characteristics, and progress, Annual Review of Energy and the Environment, vol. 27, pp. 397-431, 2002. [Google Scholar]
- S. Svanberg, Differential Absorption Lidar (DIAL), in Air Monitoring by Spectroscopic Techniques, M. Sigrist (ed.), Wiley, N.Y. 1994, p. 8 [Google Scholar]
- P. Weibring, H. Edner, and S. Svanberg, Versatile mobile lidar system for environmental monitoring, Applied Optics 42, 3583 (2003). [Google Scholar]
- G.Y. Zhao, M. Lian, Y.Y. Li, Z. Duan, S.M. Zhu, L. Mei, and S. Svanberg, Mobile lidar system for environmental monitoring, Appl. Opt., in press (2017) [Google Scholar]
- International Conference on Mercury as a Global Pollutant, with the latest version arranged in 2015 in Korea; http://mercury2015.com [Google Scholar]
- X. Fu, X. Feng, J. Sommar, and S. Wang, A review of studies on atmospheric mercury in China, Science of the Total Environment 421-422, 73-81 (2012). [CrossRef] [Google Scholar]
- D.G. Streets, J.M. Hao, Y. Wu, J.K. Jiang, M. Chan, H.Z. Tian, and X.B. Feng, Antropogenic mercury emissions in China, Atmos. Env. 39, 7789-7806 (2005). [Google Scholar]
- L. Zhang and M.H. Wong, Environmental mercury contamination in China: Sources and impacts, Environment International 33, 108-121 (2007). [Google Scholar]
- J. H. McCarthy, Jr., W. W. Vaughn, R. E. Learned, and J. L. Meuschke, Mercury in soil gas and air - A potential tool in mineral exploration,” Geological Survey Circular 609 (US Geological Survey, Washington 1969). [Google Scholar]
- S. Svanberg, Geophysical gas monitoring using optical techniques: Volcanoes, geothermal fields and mines, Optics and Lasers in Engineering 37, 245 (2002). [CrossRef] [Google Scholar]
- Z.H. Dai, X.B. Feng, J. Sommar, P. Li, and X.W. Fu, Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou province, China, Atmos. Chem. Phys. 12, 6207 (2012). [Google Scholar]
- S. Svanberg, Fluorescence spectroscopy and imaging of lidar targets, Chapter 7 in T. Fujii and T. Fukuchi (Eds) Laser Remote Sensing (CRC Press, Boca Raton 2005) pp 433-467. [CrossRef] [Google Scholar]
- H. Amann, Laser spectroscopy for monitoring and research in the ocean, Phys. Scripta T78, 68 (1998). [CrossRef] [Google Scholar]
- G.Y. Zhao, Z. Duan, M. Lian, Y.Y. Li, R.P. Chen, J.D. Hu, S. Svanberg, and Y.L. Han, Reflectance and fluorescence characterization of maize species using laboratory measurements and lidar remote sensing, Applied Optics 55, 5273 (2016). [CrossRef] [PubMed] [Google Scholar]
- V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, The fluorescence LIDAR technique for the remote sensing of photoautotrophic biodeteriogens on outdoor cultural heritage: A decade of in situ experiments, International Biodeterioration & Biodegradation (2009), doi:10.1016/ j.biod.2009.03.006. [Google Scholar]
- D. A. Cremers, and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley & Sons Ltd., West Sussex, UK, 2006). [Google Scholar]
- S. Palanco, J.M. Baena, and J.J. Laserna, Openpath laser-induced plasma spectrometry for remote analytical measurements on solid surfaces, Spectrochim. Acta B 57, 591 (2002) [CrossRef] [Google Scholar]
- R. Grönlund, M. Lundqvist, and S. Svanberg, Remote imaging laser-induced break-down spectroscopy and remote cultural heritage ablative cleaning, Opt. Lett. 30, 2882 (2005). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.