Open Access
Issue
EPJ Web Conf.
Volume 176, 2018
The 28th International Laser Radar Conference (ILRC 28)
Article Number 09012
Number of page(s) 4
Section Lidar networks
DOI https://doi.org/10.1051/epjconf/201817609012
Published online 13 April 2018
  1. Laj, P. et al.: Measuring atmospheric composition change, Atmos. Environ., 43, 5351-5414, 10.1016/j.atmosenv.2009.08.020, 2009. [CrossRef] [Google Scholar]
  2. Omar, A. et al.: The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm, J. Atmos. Ocean. Tech., 26, 1994-2014, 10.1175/2009JTECHA1231.1, 2009. [CrossRef] [Google Scholar]
  3. Burton, S.P. et al.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, 10.5194/amt-5-73-2012, 2012. [CrossRef] [Google Scholar]
  4. Nicolae, D. et al.: Using artificial neural networks to retrieve the aerosol type from multi-spectral lidar data, European Geosciences Union, General Assembly, Vol. 17, EGU2015-9793, 2015. [Google Scholar]
  5. Russell, P.B. et al.: A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry, J. Geophys. Res. Atmos., 119, 9838–9863, 10.1002/2013JD021411, 2014. [CrossRef] [Google Scholar]
  6. Hamill, P. et al.: An AERONET-based aerosol classification using the Mahalanobis distance, Atmos. Env., 140, 213-233, 10.1016/j.atmosenv.2016.06.002, 2016. [CrossRef] [Google Scholar]
  7. Pappalardo, G. et al.: EARLINET correlative measurements for CALIPSO: First intercomparison results, J. Geophys. Res., 115, D00H19, 10.1029/2009JD012147, 2010. [CrossRef] [Google Scholar]
  8. Papagiannopoulos, N. et al.: CALIPSO climatological products: evaluation and suggestions from EARLINET, Atmos. Chem. Phys., 16, 2341-2357, 10.5194/acp-16-2341-2016, 2016a. [CrossRef] [Google Scholar]
  9. Papagiannopoulos, N. et al.: Aerosol classification using EARLINET measurements for an intensive observational period, European Geosciences Union, General Assembly, Vol. 18, EGU2016-16026, 2016b. [Google Scholar]
  10. Groß, S. et al.: Characterization of Saharan dust, marine aerosols and mixtures of biomassburning aerosols and dust by means of multiwavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus B, 63, 706-724, 10.3402/tellusb.v63i4.16369, 2011. [CrossRef] [Google Scholar]
  11. Burton, S.P. et al.: Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data, Atmos. Meas. Tech., 7, 419-436, 10.5194/amt-7-419-2014, 2014 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.