Open Access
Issue
EPJ Web Conf.
Volume 180, 2018
EFM17 – Experimental Fluid Mechanics 2017
Article Number 02089
Number of page(s) 6
Section Contributions
DOI https://doi.org/10.1051/epjconf/201817002089
Published online 04 June 2018
  1. Kerim Yapici, Bulent Karasozen, Michael Schafer, Yusuf Uludag. Numerical investigation of the effect of the Rushton type turbine design factors on agitated tank flow characteristics. Chemical Engineering and Processing. (2007). [Google Scholar]
  2. F. Ein-Mozaffari, C.P.J. Bennington, G.A. Dumont, Suspension yield stress and the dynamic response of agitated pulp chests, Chem. Eng. Sci. 60 (2005). [Google Scholar]
  3. T.P. Elson, The growth of caverns formed around rotating impellers during the mixing of a yield stress fluid, Chem. Eng. 96 303-319 (1990). [Google Scholar]
  4. D. Anne-Archard, M. Marouche, H.C. Boisson. Hydrodynamics and Metzner–Otto correlation in stirred vessels for yield stress fluids. Chemical Engineering Journal, 125, 15-24 (2006). [CrossRef] [Google Scholar]
  5. J.N. Haque, T. Mahmud, K. Roberts, Modeling turbulent flows with freesurface in unbaffled agitated vessels, Ind. Eng. Chem. Res. 45, 2881-2891 (2006). [Google Scholar]
  6. V.V. Ranade, S.M.S. Dommeti, Computational snapshot of flow generated by axial impellers in baffled stirred vessels, Trans. Inst. Chem. Eng. 74, 476-484 (1996). [Google Scholar]
  7. J.J. Derksen, Numerical simulation of solid suspension in a stirred tank, AIChE J. 49, 2700-2714 (2003). [Google Scholar]
  8. M. Marouche, Hydrodynamique d’un système d’agitation en fluide viscoplastique et en régime laminaire inertiel, These de doctorat, Institut Nationale Polytechnique de Toulouse. (2002). [Google Scholar]
  9. L. Rahmanil et al. Heat transfer to Bingham fluid during laminar flow in agitated tank. International Review of Mechanical Engineering (I.RE.M.E.), Vol. 09, (2013). [Google Scholar]
  10. O’Donovan EJ, Tanner RI, Numerical analysis of the Bingham squeeze film problem, journal of Non- New. Flu. Mec. 15, 75-83, (1984). [CrossRef] [Google Scholar]
  11. PATANKAR S. V. Numerical heat transfer and fluid flow. Mc-Graw Hill. (1980). [CrossRef] [Google Scholar]
  12. G.C. Vradis, M.V. Otugen, The axisymmetric sudden expansion flow of a non-Newtonian viscoplastic fluid, J. Fluid Eng. 119, 193-200 (1997). [Google Scholar]
  13. M. Marouche, D. Anne-Archard, H.C. Boisson, A numerical model of yield stress fluid dynamics in a mixing vessel, Appl. Rheol. 12, 182-191 (2002). [Google Scholar]
  14. M. Marouche, Hydrodynamique d’un système d’agitation en fluide viscoplastique et en régime laminaire inertiel, Thése de Doctorat de l’INP Toulouse, France, (2002). [Google Scholar]
  15. A.B. Metzner, R.E. Otto, Agitation of non- Newtonian fluids, AIChE J. 3, 3-10 (1957). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.