Open Access
EPJ Web Conf.
Volume 182, 2018
6th International Conference on New Frontiers in Physics (ICNFP 2017)
Article Number 02087
Number of page(s) 22
Section Talks
Published online 03 August 2018
  1. Peter Minkowski (Bern U.), May 2005, 22 pp., 'Neutrino oscillations: A Historical overview and its projection', Contributed to Contribution to XI International Workshop “Neutrino Telescopes in Venice”, 22.-25. February 2005, Venice, Italy, published in the proceedings, e-Print: hepph/0505049, URL: [Google Scholar]
  2. James Chadwick, “Possible Existence of a Neutron”, Nature, 129 (1932) 312. [CrossRef] [Google Scholar]
  3. Ettore Majorana, 'Teoria simmetrica dell’elettrone e positrone', Nuovo Cimento 14 (1937) 171. [CrossRef] [Google Scholar]
  4. P. A. M. Dirac, Proceedings of the Cambridge Philosophical Society, 30 (1924) 150. [CrossRef] [Google Scholar]
  5. Harald Fritzsch and Peter Minkowski, “Unified interactions of leptons and hadrons”, Annals Phys. 93 (1975) 193 and [CrossRef] [Google Scholar]
  6. Howard Georgi, “The state of the art-gauge theories”, AIP Conf.Proc. 23 (1975) 575. [CrossRef] [Google Scholar]
  7. F. Gürsey and C.H. Tze, “On the role of division-, jordan-and related algebras in particle physics”, Singapore, World Scientific (1996) 461. [Google Scholar]
  8. Bruno Pontecorvo, “Mesonium and antimesonium”, JETP (USSR) 33 (1957) 549, english translation Soviet Physics, JETP 6 (1958) 429. [Google Scholar]
  9. Harald Fritzsch, Murray Gell-Mann and Peter Minkowski, “Vector-like weak currents and new elementary fermions”, Phys.Lett. B59 (1975) 256. [CrossRef] [Google Scholar]
  10. Harald Fritzsch and Peter Minkowski, “Vector-like weak currents, massive neutrinos, and neutrino beam oscillations”, Phys.Lett. B62 (1976) 72. [CrossRef] [Google Scholar]
  11. Peter Minkowski, “μ → eγ at a rate of one out of 1-billion muon decays?”, Phys.Lett. B67 (1977) 421. [CrossRef] [Google Scholar]
  12. Murray Gell-Mann, Pierre Ramond and Richard Slansky, “Complex spinors and unified theories”, published in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman (eds.), North Holland Publ. Co., 1979 and in Stony Brook Wkshp. 1979:0315 (QC178:S8:1979). [Google Scholar]
  13. Totsumo Yanagida, “Horizontal symmetry and masses of neutrinos”, published in the Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, O. Sawada and A. Sugamoto (eds.), Tsukuba, Japan, 13-14 Feb. 1979, and in (QCD161:W69:1979). [Google Scholar]
  14. Rabindra Mohapatra and Goran Senjanovič, “Neutrino mass and spontaneous parity violation”, Phys.Rev.Lett. 44 (1980) 912. [CrossRef] [Google Scholar]
  15. Shelley Glashow, “Quarks and leptons”, published in Proceedings of the Cargèse Lectures, M. Lévy (ed.), Plenum Press, New York, 1980. [Google Scholar]
  16. From “The apprentice magician” by Goethe: ‘The shadows I invoked, I am unable to get rid of now !'. [Google Scholar]
  17. Bruno Pontecorvo, “Inverse β processes and nonconservation of lepton charge”, JETP (USSR) 34 (1957) 247, english translation Soviet Physics, JETP 7 (1958) 172. [Google Scholar]
  18. Murray Gell-Mann and Abraham Pais, Phys. Rev. 96 (1955) 1387, introducing τ. [CrossRef] [MathSciNet] [Google Scholar]
  19. E.C.G. Sudarshan, R.E. Marshak (Rochester U.), “The nature of the four-fermion interaction”, first published in 1957 and Richard Feynman and Murray Gell-Mann, “Theory of Fermi interaction”, Phys.Rev. 109 1. January (1958) 193. [CrossRef] [Google Scholar]
  20. In notes to Jack Steinberger, lectures on “Elementary particle physics”, ETHZ, Zurich WS 1966/67. [Google Scholar]
  21. Carlo Giunti, “Theory of neutrino oscillations”, hep-ph/0409230. [Google Scholar]
  22. Shalom Eliezer and Arthur Swift, “Experimental consequences of νe - νμ mixing in neutrino beams”, Nucl. Phys. B105 (1976) 45, submitted 28. July 1975 and [CrossRef] [Google Scholar]
  23. Samoil Bilenky and Bruno Pontecorvo, “The lepton-quark analogy and muonic charge”, Yad. Fiz. 24 (1976) 603, submitted 1. January 1976. [Google Scholar]
  24. Shmuel Nussinov, “Solar neutrinos and neutrino mixing”, Phys.Lett. B63 (1976) 201, submitted 10. May 1976. [CrossRef] [Google Scholar]
  25. Lincoln Wolfenstein, “Neutrino oscillations in matter”, Phys.Rev. D17 (1978) 2369. [Google Scholar]
  26. Stanislav Mikheyev and Alexei Smirnov, Sov. J. Nucl. Phys. 42 (1985) 913. [Google Scholar]
  27. see e.g. Arnold Sommerfeld, “Optik”, “Elektrodynamik”, “Atombau und Spektrallinien”, Akademische Verlagsgesellschaft, Geest und Ko., Leipzig 1959. [Google Scholar]
  28. Hans Bethe, “A possible explanation of the solar neutrino puzzle”, Phys.Rev.Lett. 56 (1986) 1305. [CrossRef] [PubMed] [Google Scholar]
  29. Alexei Smirnov, “The MSW effect and matter effects in neutrino oscillations”, hep-ph/0412391. [Google Scholar]
  30. John Bahcall and Carlos Pena-Garay, “Global analyses as a road map to solar neutrino fluxes and oscillation parameters”, JHEP 0311 (2003) 004, hep-ph/0305159. [NASA ADS] [CrossRef] [Google Scholar]
  31. Gian Luigi Fogli, Eligio Lisi, Antonio Marrone, Daniele Montanino, Antonio Palazzo and A.M. Rotunno, “Neutrino oscillations: a global analysis”, hep-ph/0310012. [Google Scholar]
  32. Samoil Bilenky, Silvia Pascoli and Serguey Petcov, “Majorana neutrinos, neutrino mass spectrum, CP violation and neutrinoless double beta decay. 1. The three neutrino mixing case”, Phys.Rev. D64 (2001) 053010, hep-ph/0102265. [Google Scholar]
  33. Bruce Cleveland, Timothy Daily, Raymond Davis, James Distel, Kenneth Lande, Choon-kyu Lee, Paul Wildenhain and Jack Ullman, “Measurement of the solar electron neutrino flux with the Home-stake chlorine detector”, Astrophys. J. 496 (1998) 505. [NASA ADS] [CrossRef] [Google Scholar]
  34. V. Gavrin, “Results from the Russian American gallium experiment”, for the SAGE collaboration, [Google Scholar]
  35. J.N. Abdurashitov et al., J. Exp. Theor. Phys. 95 (2002) 181, astro-ph/0204245. [CrossRef] [Google Scholar]
  36. W. Hampel et al., (GALLEX collaboration), “GALLEX solar neutrino observations: results for GALLEX IV”, Phys. Lett. B 447 (1999) 127. [NASA ADS] [CrossRef] [Google Scholar]
  37. Y. Fukuda et al. (Kamiokande collaboration) “Solar neutrino data covering solar cycle 22”, Phys. Rev. Lett. 77 (1996) 1683. [CrossRef] [PubMed] [Google Scholar]
  38. A. Suzuki for the Kamland collaboration, “Results from Kamland”, Nucl.Phys.Proc.Suppl. 137 (2004) 21. [CrossRef] [Google Scholar]
  39. D. Sinclair for the SNO collaboration, “Recent results from SNO”, Nucl.Phys.Proc.Suppl. 137 (2004) 150. [Google Scholar]
  40. William Shakespeare, “Much Ado About Nothing”, Pocket Book at Orell Fússli Verlag, URL: [Google Scholar]
  41. Friedrich Schiller, “Die Kraniche des Ibykus” at Orell Füssli Verlag: Schiller’s Ballads: Der Gang nach dem Eisenhammer, Die Kraniche des Ibykus, Der Taucher and Der Kampf mit dem Drachen; URL: [Google Scholar]
  42. Ziro Maki, Masami Nakagawa, and Shoichi Sakata, Prog. Theor. Phys. 28 (1962) 870. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  43. Peter Minkowski (Bern U.), Feb 2012, 39 pp., “Canonical (anti-)commutation rules in QCD and unbroken gauge invariance, QCD-the two central anomalies and canonical structure”, Conference: C12-01-09.1, e-Print: arXiv:1202.2488 [hep-th]. [Google Scholar]
  44. Peter Minkowski, (Albert Einstein Center for Fundamental Physics-ITP, University of Bern, Switzerland), “Avenues of cognition of nongravitational local gauge field theories”, published in EPJ Web of Conferences 95, 03025 (2015), DOI: 10.1051/epjconf/20159503025. [CrossRef] [EDP Sciences] [Google Scholar]
  45. Mikhail A. Shifman, A.I. Vainshtein, Valentin I. Zakharov (Moscow, ITEP), “QCD and Resonance Physics: Applications”, 1978, 71 pp., Published in Nucl.Phys. B147 (1979) 448-518 ITEP-94-1978, ITEP-81-1978 DOI: 10.1016/0550-3213(79)90023-3. [Google Scholar]
  46. Clemens Heusch and Peter Minkowski, “Lepton flavor violation induced by heavy Majorana neutrinos”, Nucl.Phys. B416 (1994) 3. [CrossRef] [Google Scholar]
  47. Nicola Ambrosetti, Daniel Arnold, Jean-Pierre Derendinger (Bern U.), Jelle Hartong (Brussels U., PTM & Intl. Solvay Inst., Brussels), Jul 28, 2016. 50 pp., “Gauge coupling field, currents, anomalies and N=1 super-Yang-Mills effective actions”, Published in Nucl.Phys. B915 (2017) 285-334, DOI: 10.1016/j.nuclphysb.2016.12.011, e-Print: arXiv:1607.08646 [hep-th]. [Google Scholar]
  48. Peter Minkowski (Bern U.), 2009, 31 pp., “The origin of neutrino mass: Stations along the path of cognition”, Published in J.Phys.Conf.Ser. 171 (2009) 012016, DOI: 10.1088/1742-6596/171/1/012016; Conference: C08-12-11 Proceedings, Link to Fulltext. [CrossRef] [Google Scholar]
  49. Pavel Fileviez Pérez, Clara Murgui, Aug 7, 2017, 7 pp., “Sterile Neutrinos and B-L Symmetry”, e-Print: arXiv:1708.02247 [hep-ph]. [Google Scholar]
  50. Keith A. Olive (Minnesota U., Theor. Phys. Inst.), 2017, 20 pp., “Supersymmetric versus SO(10) models of dark matter”, Published in Int.J.Mod.Phys. A32 (2017) no.13, 1730010, DOI: 10.1142/S0217751X17300101, for a review of searches for related signals by the ATLAS colaboration see: URL: [Google Scholar]
  51. A. Crivellin, (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland), Dario Müller, Adrian Signer and Yannick Ulrich (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland and Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland), PSI-PR-17-11, ZU-TH 16/17, “Correlating Lepton Flavour (Universality) Violation in B Decays with μ → e γ using leptoquarks”, arXiv:1706.08511v1 [hep-ph], 26 Jun 2017. [Google Scholar]
  52. B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, and J. Virto (2017), 1704.05340. [Google Scholar]
  53. W. Altmannshofer and D. M. Straub (2015), 1503.06199. [Google Scholar]
  54. S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto JHEP 06, 092 (2016), 1510.04239. [CrossRef] [Google Scholar]
  55. Y. Amhis et al. (2016), 1612.07233. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.