Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01045
Number of page(s) 6
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301045
Published online 07 September 2018
  1. F.A.O. Fernandes, R.T. Jardin, A.B. Pereira, and R.J. Alves de Sousa. Comparing the mechanical performance of synthetic and natural cellular materials. Materials & Design, 82 335-341 (2015) [CrossRef] [Google Scholar]
  2. L. Di Landro, G. Sala, and D. Olivieri. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets, Polymer Testing, 21 217-228 (2002) [Google Scholar]
  3. A. Pellegrino, V.L. Tagarielli, R. Gerlach, and N. Petrinic. The mechanical response of a syntactic polyurethane foam at low and high rates of strain, In-ternational Journal of Impact Engineering, 75 214-221 (2015) [Google Scholar]
  4. J.C. Gowda. A flexible syntactic foam for shock mitiga-tion, PhD thesis, North Carolina A&T State University (2011) [Google Scholar]
  5. H. Jmal. Identification du comportement quasi-statique et dynamique de la mousse de polyuréthane au travers de modèles à mémoire, PhD thesis, Université de Haute Alsace (2012) [Google Scholar]
  6. Z.H. Tu, V.P.W. Shim, and C.T. Lim. Plastic deforma-tion modes in rigid polyurethane foam under static load-ing, International Journal of Solids and Structures, 38 9267-9279 (2001) [CrossRef] [Google Scholar]
  7. W. Chen, F. Lu, and N. Winfree. High-strain-rate com-pressive behavior of a rigid polyurethane foam with vari-ous densities, Experimental Mechanics, 42 65-73 (2002) [Google Scholar]
  8. E. Zaretsky, Z. Asaf, E. Ran, and F. Aizik. Impact re-sponse of high density flexible polyurethane foam, Inter-national Journal of Impact Engineering, 39 1-7 (2012) [CrossRef] [Google Scholar]
  9. D.M. Dattelbaum, J.D. Coe, C.B. Kiyanda, R.L. Gus-tavsen, and B.M. Patterson. Reactive, anomalous com-pression in shocked polyurethane foams, Journal of Ap-plied Physics, 115 174908 (2014) [CrossRef] [Google Scholar]
  10. S.P. Marsh. LASL shock Hugoniot data, University of California Press (1980) [Google Scholar]
  11. L. Berthe. Processus de claquage de milieux transpar-ents sous irradiation laser. Application au choc laser en régime de confinement par eau, PhD thesis, Université de Paris Sud (1998) [Google Scholar]
  12. J. Grün, R. Decoste, B.H. Ripin, and J. Gardner. Char-acteristics of ablation plasma from planar, laser-driven targets, Applied Physics Letters, 39 545-547 (1981) [Google Scholar]
  13. A.V. Bushman, I.V. Lomonosov, and V.E. Fortov. Equations of state for metals at high energy density, In-stitute of Chemical Physics (1992) [Google Scholar]
  14. D.J. Steinberg, S.G. Cochran, and M.W. Guinan. A constitutive model for metals applicable at high-strain-rate, Journal of Applied Physics 51 (1980) [Google Scholar]
  15. L. Seaman, R.E. Tokheim, and D.R. Curran. Com-putational representation of constitutive relations for porous materials, Technical report, Stanford Research Institute (1974) [Google Scholar]
  16. L.J. Gibson and M.F. Ashby. Cellular solids: Structure and properties – Second edition, Cambridge University Press (1997) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.