Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01046
Number of page(s) 6
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301046
Published online 07 September 2018
  1. E. M. Schulson, ‘Structure and mechanical behavior of ice’, JOM, vol. 51, no. 2, pp. 21–27 (1999) [CrossRef] [Google Scholar]
  2. K. Soobarayen et al., ‘Caractérisation, modélisation et simulation numérique du comportement de la glace en dynamique rapide’, presented at the CSMA 2017, Giens (2017) [Google Scholar]
  3. A. Combescure, Y. Chuzel-Marmot, and J. Fabis, ‘Experimental study of high-velocity impact and fracture of ice’, Int. J. Solids Struct., vol. 48, no. 20, pp. 2779–2790 (2011) [CrossRef] [Google Scholar]
  4. H. Fangming, ‘Experimental and numerical modeling of high speed ice impact onto rigid target’, Cranfield university (2015) [Google Scholar]
  5. P. K. Dutta, D. M. Cole, M. S. Erland, and S. S. Devinder, ‘A Fracture Study of Ice Under High Strain Rate Loading’ (2004) [Google Scholar]
  6. K. S. Carney, D. J. Benson, P. DuBois, and R. Lee, ‘A high strain rate model with failure for ice in LS-DYNA’ (2009) [Google Scholar]
  7. M. Shazly, V. Prakash, and B. A. Lerch, ‘High strain-rate behavior of ice under uniaxial compression’, Int. J. Solids Struct., vol. 46, no. 6, pp. 1499–515 (2009) [CrossRef] [Google Scholar]
  8. Y. Chuzel, ‘Caractérisation expérimentale et simulation numérique d’impacts de glace à haute vitesse’, Institut national des sciences appliquées de Lyon (2009) [Google Scholar]
  9. R. Ortiz, E. Deletombe, and Y. Chuzel-Marmot, ‘Assessment of damage model and strain rate effects on the fragile stress/strain response of ice material’, Int. J. Impact Eng., vol. 76, pp. 126–138 (2015) [CrossRef] [Google Scholar]
  10. J. Pernas-Sanchez, D. A. Pedroche, D. Varas, J. Lopez-Puente, and R. Zaera, ‘Numerical modeling of ice behavior under high velocity impacts’, Int. J. Solids Struct., vol. 49, no. 14, pp. 1919–27 (2012) [CrossRef] [Google Scholar]
  11. K. S. Carney, D. J. Benson, P. DuBois, and R. Lee, ‘A phenomenological high strain rate model with failure for ice’, Int. J. Solids Struct., vol. 43, no. 25–26, pp. 7820–7839 (2006) [CrossRef] [Google Scholar]
  12. J. D. Tippmann, H. Kim, and Jennifer D. Rhymer, ‘Experimentally validated strain rate dependent material model for spherical ice impact simulation’, Int. J. Impact Eng., vol. 57, pp. 43–54 (2013) [Google Scholar]
  13. T. Sain and R. Narasimhan, ‘Constitutive modeling of ice in the high strain rate regime’, Int. J. Solids Struct., vol. 48, no. 5, pp. 817–827 (2011) [CrossRef] [Google Scholar]
  14. M. Anghileri, L. M. L. Castelletti, F. Invernizzi, and M. Mascheroni, ‘A survey of numerical models for hail impact analysis using explicit finite element codes’, Int. J. Impact Eng., vol. 31, no. 8, pp. 929–44 (2005) [CrossRef] [Google Scholar]
  15. M. A. Lavoie, A. Gakwaya, M. N. Ensan, D. G. Zimcik, and D. Nandlall, ‘Bird’s substitute tests results and evaluation of available numerical methods’, Int. J. Impact Eng., vol. 36, no. 10, pp. 1276–1287 (2009) [Google Scholar]
  16. J. D. Tippmann, ‘Development of a strain rate sensitive ice material model for hail ice impact simulation (2011) [Google Scholar]
  17. G. R. Liu and M. B. Liu, Smoothed Particule Hydridynamics a meshfree particle method. Singapore (2003) [Google Scholar]
  18. F. Yu. A., ‘Feautures of compressive failure of brittle materials’, Hamburg, Germany (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.