Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01055
Number of page(s) 6
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301055
Published online 07 September 2018
  1. R.K. Goldberg, K.S. Carney, P. Du Bois, C. Hoffarth, J. Harrington, R. Subramaniam, G. Blakenhorn, Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model in: 13th International LSDYNA Users Conference [Google Scholar]
  2. C. Hoffarth, J. Harrington, R.D. Subramaniam, R.K. Goldberg, K.S. Carney, P. Du Bois, G. Blakenhorn, Verification and Validation of a Three-Dimensional Generalized Composite Material Model in: 13th International LS-DYNA Users Conference [Google Scholar]
  3. A. Puck, M. Mannigel, Physically based non-linear stress– strain relations for the inter-fibre fracture analysis of FRP laminates, Composites Science and Technology, 67, 1955- 1964 (2007) [CrossRef] [Google Scholar]
  4. M. Xie, D.F. Adams, A plasticity model for unidirectional composite materials and its applications in modeling composites testing, Composites Science and Technology, 54, 11-21 (1995) [CrossRef] [Google Scholar]
  5. G.M. Vyas, S.T. Pinho, P. Robinson, Constitutive modelling of fibre-reinforced composites with unidirectional plies using a plasticity-based approach, Composites Science and Technology, 71 1068-1074 (2011) [CrossRef] [Google Scholar]
  6. D.M. Thomson, B. Erice, H. Cui, J. Hoffmann, J. Wiegand, N. Petrinic, A Puck-based localisation plane theory for rate-and pressure-dependent constitutive modelling of unidirectional fibre-reinforced polymers, Composite Structures, 184 299-305 (2018) [CrossRef] [Google Scholar]
  7. R. Gerlach, C.R. Siviour, N. Petrinic, J. Wiegand, Experimental characterisation and constitutive modelling of RTM-6 resin under impact loading, Polymer, 49, 2728- 2737 (2008) [CrossRef] [Google Scholar]
  8. W.M. Wang, L.J. Sluys, R. de Borst, Viscoplasticity for instabilities due to strain softening and strain-rate softening, International Journal for Numerical Methods in Engineering, 40, 3839-3864 (1997) [CrossRef] [Google Scholar]
  9. S. Eskandari, F.M. Andrade Pires, P.P. Camanho, A.T. Marques, Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part I – Constitutive model, Composite Structures, 151, 114-126 (2016) [CrossRef] [Google Scholar]
  10. T. Børvik, Hopperstad, O.S., Berstad, T., Langseth, M., A computational model of viscoplasticity and ductile damage for impact and penetration, European Journal of Mechanics - A/Solids, 20, 685-712 (2001) [CrossRef] [Google Scholar]
  11. B. Erice, C.C. Roth, D. Mohr, Stress-state and strain-rate dependent ductile fracture of dual and complex phase steel, Mechanics of Materials, 116, 11-32 (2018) [CrossRef] [Google Scholar]
  12. G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, in: 7th International Symposium on Ballistics, The Hague, pp. 541-547 1983 [Google Scholar]
  13. H. Koerber, J. Xavier, P.P. Camanho, High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation, Mechanics of Materials, 42, 1004-1019 (2010) [CrossRef] [Google Scholar]
  14. H. Korber, Mechanical Response of Advanced Composites under High Strain Rates (Departamento de Engenharia Mecanica, Universidade do Porto, 2010) [Google Scholar]
  15. D.M. Thomson, H. Cui, B. Erice, J. Hoffmann, J. Wiegand, N. Petrinic, Experimental and numerical study of strain-rate effects on the IFF fracture angle using a new efficient implementation of Puck’s criterion, Composite Structures, 181, 25-335 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.