Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01060
Number of page(s) 6
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301060
Published online 07 September 2018
  1. P. E. Nebolsine. Laser simulation of hypervelocity impact. Proceedings of the AIAA 14th ASM (1976) [Google Scholar]
  2. A. N. Pirri. Theory for laser simulation of hypervelocity impact. Physics of Fluids 20, 221-228 (1977) [CrossRef] [Google Scholar]
  3. D. Hebert, G. Seisson, J.-L. Rullier, I. Bertron, L. Hallo, J.-M. Chevalier, C. Thessieux, F. Guillet, M. Boustie, and L. Berthe. Hypervelocity impacts into porous graphite: experiments and simulations. Philosophical Transactions of the Royal Society A 375, 2085 (2016) [Google Scholar]
  4. G. Seisson, D. Hebert, I. Bertron, J.-M. Chevalier, L. Hallo, E. Lescoute, L. Videau, P. Combis, F. Guillet, M. Boustie, and L. Berthe. Dynamic cratering of graphite: experimental results and simulations. International Journal of Impact Engineering 63, 18-28 (2014) [CrossRef] [Google Scholar]
  5. B. Aubert, D. Hebert, J.-L. Rullier, I. Bertron, F. Malaise, L. Videau, E. Lescoute, and L. Berthe. Laser driven cratering of porous graphite: experiments and simulations. Proceedings of the 22nd DYMAT Technical Meeting (2016) [Google Scholar]
  6. G. Seisson, G. Prudhomme, P.-A. Frugier, D. Hebert, E. Lescoute, A. Sollier, L. Videau, P. Mercier, M. Boustie, and L. Berthe. Dynamic fragmentation of graphite under laser driven shocks: Identification of four damage regimes. International Journal of Impact Engineering 91, 68-79 (2016) [CrossRef] [Google Scholar]
  7. L. M. Barker, and R. E. Hollenbach. Laser interferometer for measuring high velocities of any reflecting surface. Journal of Applied Physics 43, 4669-4675 (1972) [Google Scholar]
  8. O. T. Strand, D. R. Goosman, C. Martinez, and T. L. Whitworth. Compact system for high speed velocimetry using heterodyne techniques. Review of Scientific Instruments 77 083108 (2006) [Google Scholar]
  9. D. J. Steinberg, S. G. Cochran, and M. W. Guinan. A constitutive model for metals applicable at high strain rate. Journal of Applied Physics. 51, 545-547 (1981) [Google Scholar]
  10. B. Aubert, D. Hebert, J.-L. Rullier, E. Lescoute, L. Videau, and L. Berthe. 2D characterization of the pressure generated by an intense laser pulse on an aluminum target. Proceedings of the 22th APS SCCM Conference (2017) [Google Scholar]
  11. L. Seaman, R. E. Tokheim, and D. R. Curran. Computational representation of constitutive relations for porous material. SRI Technical Report DNA-3412F (1974) [Google Scholar]
  12. J. Grun, R. Decoste, B. H. Ripin, and J. Gardner. Characteristics of ablation plasma from planar, laser driven targets. Applied Physics Letters 39, 545-547 (1981) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.