Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 02008
Number of page(s) 6
Section Experimental Techniques
DOI https://doi.org/10.1051/epjconf/201818302008
Published online 07 September 2018
  1. M. Ahmed, D. Wexler, et al. The influence of b phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy. Acta Materialia 84 124-135 (2015) [CrossRef] [Google Scholar]
  2. D.G. Robertson, H.B. Mc Shane, Isothermal hot deformation behavior of metastable beta titanium alloy Ti-10V-2Fe-3Al, Mater. Sci. Technol. 13 575-583 (1999) [Google Scholar]
  3. Suresh Neelakantan, P.E.J. Rivera-Diaz-del-Castillo and Sybrand van der Zwaag. Prediction of the martensite start temperature for b titanium alloys as a function of composition. Scripta Materialia 60 611-614 (2009) [CrossRef] [Google Scholar]
  4. F. Warchomicka, M. Stockinger, H.P. Degischer. Quantitative analysis of the microstructure of near titanium alloy during compression tests. Journal of Materials Processing Technology 177 473-477 (2006) [CrossRef] [Google Scholar]
  5. M. Jackson, R. Dashwood, L. Christodoulou, H. Flower, Application of novel technique to examine thermomechanical processing of near β alloy Ti–10V– 2Fe–3Al, Materials Science and Technology. 16 1437 (2000) [CrossRef] [Google Scholar]
  6. M. Jackson, R. Dashwood, L. Christodoulou, H. Flower, The microstructural evolution of near beta alloy Ti-10V-2Fe-3Al during subtransus forging, Metall. Mater. Trans. A 36A 1317-1327 (2005) [CrossRef] [Google Scholar]
  7. T.W. Duerig, J. Albrecht, D. Richter, P. Fischer. Formation and Reversion of Stress Induced Martensitic in Ti-10V-2Fe-3Al. Acta Metall. 30 2161-2172 (1982) [Google Scholar]
  8. C. Li, J.H. Chen, et al., Tuning the stress induced martensitic formation in titanium alloys by alloy design. J. Mater. Sci. 47 4093-4100 (2012) [CrossRef] [Google Scholar]
  9. S.L. Semiatin, T.R. Bieler, The effect of alpha platelet thickness on plastic flow during hot working of Ti6Al4V with a transformed microstructure, Acta Mater. 49 3565- 3573 (2001) [CrossRef] [Google Scholar]
  10. Niu W, Bermingham MJ, Baburamani PS, Palanisamy S, Dargusch MS, Turk S, Grigson B, Sharp PK, The effect of cutting speed and heat treatment on the fatigue life of Grade 5 and Grade 23 Ti-6Al-4Valloys. Mater Des 46 (4): 640–644 (2013) [CrossRef] [Google Scholar]
  11. Su Y, He N, Li L, Li XL, An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear 261 (7–8): 760–766 (2006) [CrossRef] [Google Scholar]
  12. Armendia M, Garay A, Iriarte LM, Arrazola PJ Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC-Co tools. J Mater Process Technol 210 (2): 197–203 (2010) [Google Scholar]
  13. Jaffery SHI, Mativenga PTWear mechanisms analysis for turning Ti-6Al-4V—towards the development of suitable tool coatings. Int J Adv Manuf Technol 58 (5–8): 479–493 (2012) [Google Scholar]
  14. D. Bai, J. Sun, W. Chen, T. Wang, Int J Adv Manuf Technol. DOI 10.1007/s00170-016-9607-z (2016) [Google Scholar]
  15. H. Yang, Z. Chen, Z. Zhou, Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling. Int J Adv Manuf Technol 78 (5-8): 1113-1126 (2015) [CrossRef] [Google Scholar]
  16. M. Long, H.J. Rack, High temperature discontinuous yielding in betaphase Ti3Al–(Nb, V, Mo) alloys, in: P.A. Blenkinsop, W.J. Evans, H.M. Flower (Eds.), Titanium’95: Science and Technology, The Institute of Materials, London, pp. 316-323 (1996) [Google Scholar]
  17. M.N. Vijayshankar, S. Ankem, High temperature deformation of alpha, alpha-beta and beta titanium alloys, in: F.H. Froes, I. Caplan (Eds.), Titanium’92: Science and Technology, TMS, Warrendale, PA, pp. 1733-1739 (1993) [Google Scholar]
  18. P. Wanjara, M. Jahazi, H. Monajati, S. Yue, J.-P. Immarigeon, Hot working behavior of near-alpha alloy IMI834, Mater. Sci. Eng. A 396 50-60 (2005) [CrossRef] [Google Scholar]
  19. D.G. Robertson, H.B. McShane, Isothermal hot deformation behavior of metastable β titanium alloy Ti-10V-2Fe-3AI. Mater. Sci. Technol. 13575-583 (1997) [Google Scholar]
  20. V.V. Balasubrahmanyam & Y.V.R.K. Prasad, Hot deformation mechanisms in metastable beta titanium alloy Ti-10V-2Fe-3Al, Materials Science and Technology, 17 1222 (2001) [Google Scholar]
  21. Johnson, G.R., Cook, W.H., Fracture characteristic of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31 (1985) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.