Open Access
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 02009
Number of page(s) 6
Section Experimental Techniques
Published online 07 September 2018
  1. ArcelorMittal (2014). Steels for hot stamping-Usibor. The product catalogue, 2014. [Google Scholar]
  2. Chao, YJ. (2003). Failure mode of spot welds: inter-facial versus pullout. Science TechnologyWeld Joining, Vol. 8, pp. 133-7. [Google Scholar]
  3. Lin, SH., Pan, J., Tyan, J., Prasad, P., A general failure criterion for spot-welds under combined loading conditions. International Journal of Solids and Structures, Vol. 40, 553964 (2003). [Google Scholar]
  4. Dancette, S., Fabrègue, D., Massardier, V., Merlin, J., Dupuy, T., Bouzekri, M. (2010). Experimental and modeling investigation of the failure resistance of Advanced High Strength Steels spot welds. Engineering Fracture Mechanics, Vol. 78, pp. 2259–2272. [CrossRef] [Google Scholar]
  5. Langrand, B., Markiewicz, E. (2010). Strain-rate dependence in spot welds: Non-linear behaviour and failure in pure and combined modes I/II. International Journal of Impact Engineering, Vol. 37, pp. 792–805. [CrossRef] [Google Scholar]
  6. Nielsen, C.V., Friis, K.S., Zhang, W., Bay, N. (2011). Three-Sheet Spot Welding of Advanced High-Strength Steels:The weldability of thin, low-carbon steel to two thicker, high-strength steels is studied through factorial experimentation and statistical analysis. Welding Research, Vol. 90, pp. 32–40. [Google Scholar]
  7. Tavassolizadeh, A., Marashi, S.P.H., Pouranvari, M. (2011). Mechanical performance of three thickness resistance spot welded low carbon steel. Materials Science and Technology, Vol. 27, pp. 219–224. [CrossRef] [Google Scholar]
  8. Pouranvari, M., Marashi, S.P.H. (2011). Failure Behavior of Three-Steel Sheet Resistance Spot Welds: Effect of Joint Design. Journal of Materials Engineering and Performance, Vol. 16. [Google Scholar]
  9. Pouranvari, M., Marashi, S.P.H. (2012). Weld nugget formation and mechanical properties of three-sheet resistance spot welded low carbon steel. Canadian Institute of Mining, Metallurgy and Petroleum, Vol. 51, pp. 105–109. [Google Scholar]
  10. Wei, S.T., Liu, R.D., Lv, D., Lin, L., Xu, R.J., Guo, J.Y., Wang, K.Q., Lu, X.F. (2015). Weldability and mechanical properties of similar and dissimilar resistance spot welds of three-layer advanced high strength steels. Science and Technology of Welding and Joining, Vol. 20, pp. 20–26. [CrossRef] [Google Scholar]
  11. Lee, Y., Wehner, T., Lu, M., Morrissett, T., Pakalnins, E., Ultimate trength of resistance spot welds subjected to combined tension. Journal of Testing and Evaluation, Vol. 26, 213–219, (1998). [CrossRef] [Google Scholar]
  12. Chtourou, R., Leconte, N., Chaari, F., Haugou, G., Markiewicz, E., Zouari, B. (2017). Macromodeling of the strength and failure of multi-layer multi-steel grade spot welds : connector formulation, assembly model and identification procedure. Thin-Walled Structures, Vol. 113, pp. 228239. 119 [CrossRef] [Google Scholar]
  13. Chtourou, Haugou, G., R., Leconte, N., Zouari, B., Chaari, F., Markiewicz, E. (2015). Experimental characterization and macro-modeling of mechanical strength of multi-sheet and multi-material spot welds under pure and mixed modes I and II. EPJWeb of Conferences, Vol. 94, pp. 01032. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.