Open Access
EPJ Web Conf.
Volume 195, 2018
3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Article Number 00002
Number of page(s) 2
Published online 23 November 2018
  1. Shevchenko O. A. et al. Novosibirsk free electron la-ser facility // These Proceedings, 2018. [Google Scholar]
  2. Kulipanov G. N et al. Novosibirsk free electron laser as a user facility // IEEE Trans. on THz Sci. Techn. 2015. V. 5, No. 5. P. 798-809. [CrossRef] [Google Scholar]
  3. Kubarev, V. V. Instabilities, coherency, and spectra of the NovoFEL radiation // EPJ Web of Conf. 2017. V. 149. 05007. [CrossRef] [Google Scholar]
  4. Chesnokov, E. N., et al. The influence of magnetic field on the echo-like free induction decay in NO2 // Chem. Phys. Lett. 2016. V. 662. P. 62–66. [CrossRef] [Google Scholar]
  5. Chesnokov, et al. Heterodyne Method of Detection of Molecular Gas in the Terahertz Region Using the Beats Between Free Induction Decay Signals // IEEE Trans. on THz Sci. Techn. 2017. V. 7, No. 2. P. 144–150. [CrossRef] [Google Scholar]
  6. Kubarev, V. V. et al. Threshold conditions for terahertz laser discharge in atmospheric gases // J. Infrared, Millimeter, and THz Waves. 2017. V 38, No. 6. P. 787-798. [CrossRef] [Google Scholar]
  7. Pavelyev, V. S. et al. Fabrication of high-effective silicon diffractive optics for the terahertz range by femtosecond laser ablation // Phys. Procedia. 2016. V. 84, P. 177-174. [CrossRef] [Google Scholar]
  8. Agafonov, A.N. et al. Focusing of Novosibirsk free electron laser (NovoFEL) radiation into paraxial segment // J. Modern Opt. 2016. V. 63. No. 11. P. 1051-1054. [CrossRef] [Google Scholar]
  9. Choporova, Y. Y. et al., High-power Bessel beams with orbital angular momentum in the terahertz range // Phys. Rev. A. 2017. Vol. 96. No. 2. 023846. [CrossRef] [Google Scholar]
  10. Knyazev, B., Serbo, V., Beams of photons with a nonzero projection of the orbital angular momentum new results // Phys. Uspekhi, 2018. V. 61. No. 5. P. 449-479. [CrossRef] [Google Scholar]
  11. Knyazev B.A. et al. Quasi-Talbot effect with vortex beams and formation of vortex beamlet arrays // Opt. Expr. 2018. V. 26. No. 11. 14174. [CrossRef] [Google Scholar]
  12. Nikitin, P. A. et al. Deflection of terahertz vortex beam in nonpolar liquids by means of acousto-optics // Phys. Procedia (2016) [Google Scholar]
  13. Kozlov, A.S. et al. Formation of Nanosized Metal Hydrosols under the Influence of Novosibirsk Terahertz free Electron Laser Radiation // Phys. Procedia. 2016. V. 84. P. 131–134. [CrossRef] [Google Scholar]
  14. Choporova, Yu. Yu. et al. Classical Holography in the Terahertz Range: Recording and Reconstruction Techniques // IEEE Trans. on THz Sci. Techn. 2015. V. 5, No. 5. P. 836–844. [CrossRef] [Google Scholar]
  15. Azarov, I. A. et al. Measurement of optical constants of liquids in the terahertz range using internal reflection ellipsometry // J. Infrared Millimeter THz Waves, 2018, submitted. [Google Scholar]
  16. Gerasimov, V. V. et al. Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating // JOSA B. 2016. V. 33, No. 11. P. 2196-2203. [CrossRef] [Google Scholar]
  17. Gerasimov, V. V. et al. Wave-vector spectrum of monochromatic terahertz surface plasmon polaritons on real surfaces // Phys. Procedia. 2016. .V. 84. P. 157-164. [CrossRef] [Google Scholar]
  18. Knyazev, B. A. et al. Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum // Phys. Rev. Lett. 2015. V. 115. No. 16. 163901. [CrossRef] [PubMed] [Google Scholar]
  19. Goryachkovskaya, T. N. et al. The impact of terahertz radiation on an extremophilic archaean Halorubrum saccharovorum proteome // Vavilov Journal of Genetics and Breeding. 2016. V. 20. No. 6. P. 869-875. [CrossRef] [Google Scholar]
  20. R. Kh. Zhukavin et al. Low-temperature intraceter relaxation times of shallow donors in germanium // JETP Lett. 2017. V. 106, No. 9, P. 571-575. [CrossRef] [Google Scholar]
  21. Veber, S. L. et al. X-band EPR setup with THz light excitation of Novosibirsk free electron laser: goals, means, useful extras // J. Magn. Res. 2018. V. 288. P. 11-22. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.