Open Access
EPJ Web Conf.
Volume 195, 2018
3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Article Number 02002
Number of page(s) 2
Section Optoelectronic & Solid-State Sources of THz Radiation
Published online 23 November 2018
  1. Maekawa, T., Kanaya, H., Suzuki, S., Asada, M. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss // Applied Physics Express 2016. V. 9, No. 2. P. 024101 [CrossRef] [Google Scholar]
  2. Wacker, A. Semiconductor superlattices: a model system for nonlinear transport // Physics Reports, 2002. V. 357, P. 1 [CrossRef] [Google Scholar]
  3. Klappenberger, F., Alekseev, K. N., Renk, K. F., et al. Ultrafast creation and annihilation of space-charge domains in a semiconductor superlattice observed by use of Terahertz fields // Eur. Phys. J. B 2004. V. 39, P. 483 [CrossRef] [EDP Sciences] [Google Scholar]
  4. Thim, H. W., Linear microwave amplification with Gunn oscillators // IEEE Trans. Electron. DeV. 1967. V. 14, P. 517 [Google Scholar]
  5. Hakki, B. W. Amplification in Two-Valley Semiconductors // J. Appl. Phys. 1967. V. 38, P. 808 [CrossRef] [Google Scholar]
  6. Zhdanova, N. G., Kagan, M. S., Kalashnikov, S. G. Impedance of semiconductor with static domain // Sov. Phys. Semicond. 1974. V. 8, P. 1121; 1126 [Google Scholar]
  7. Altukhov, I. V., Kagan, M. S., Kalashnikov, S. G., et al. Electromagnetic wave amplification by Gunn diodes with moving domains // Sov. Tech. Phys. Lett. 1980. V. 6, P. 237 [Google Scholar]
  8. Kagan, M.S., Landsberg, E.G., Chernyshov, I.V. Negative conductivity due to vibrations of the wall of a static domain, Sov. Phys. Semicond. 1984. V. 18, P. 615 [Google Scholar]
  9. Altukhov, I. V. Dizhur, S. E. Kagan, M. S., et al. Effect of a Terahertz Cavity on the Conductivity of Short-Period GaAs/AlAs Superlattices // JETP Letters 2016. V. 103, No. 2, P. 122 [CrossRef] [Google Scholar]
  10. Altukhov, I. V. Kagan, M. S. Kalashnikov, S. G., et al. Electrical instability of a semicondutor with a negative differential conductivity due to simultaneous heating of electrons by static and alternating electric fields // Sov. Phys. Semicond. 1978. V. 12, P. 172 [Google Scholar]
  11. Suris R. A. Inhomogeneous structures in semiconductors with superlattices // Sov. Phys. Semicond. 1973. V. 7, No. 8 P. 1035 [Google Scholar]
  12. Bonilla, L. L., Grahn H. T. Non-linear dynamics of semiconductor superlattices // Rep. Prog. Phys. 2005. V. 68, No. 3, P. 577 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.