Open Access
EPJ Web Conf.
Volume 195, 2018
3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Article Number 02007
Number of page(s) 2
Section Optoelectronic & Solid-State Sources of THz Radiation
Published online 23 November 2018
  1. G.Kh. Kitaev. a Terahertz generation by means of optical lasers // Laser Phys. Lett. V. 559, P. 20085. [Google Scholar]
  2. N.M. Burford and M.O. El-Shenawee. Review of terahertz photoconductive antenna technology // Opt. Eng. 2017, V. 56, P.10901. [CrossRef] [Google Scholar]
  3. E. Castro-Camus and M. Alfaro. Photoconductive devices for terahertz pulsed spectroscopy: a review // Photon. Res. 2016, V. 4, P. A35. [CrossRef] [Google Scholar]
  4. A. Takazato M. Kamakura, T. Matsui, J. Kitagawa and Y. Kadoya. Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation // Appl. Phys.Lett. 2007, V. 91, P. 011102. [CrossRef] [Google Scholar]
  5. I. Kostakis and M. Missous. Optimization and temperature dependence characteristics of low temperature In0.3Ga0.7As and In0.53 Ga0.47AsIn0.52Al0.48As semiconductor terahertz photoconductors // AIP AdV. 2013. V. 3, P. 092131. [CrossRef] [Google Scholar]
  6. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus and M. Schell. All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths Opt. Express 2008, 16 9565 [Google Scholar]
  7. X. Liu, A. Prasad, J. Nishio, E.R. Weber, Z. Liliental-Weber and W. Walukiewicz. Native point defects in low-temperature-grown GaAs // Appl. Phys. Lett. 1995. V. 67, P. 279. [CrossRef] [Google Scholar]
  8. H. Künzel, J. Böttcher, R. Gibis and G. Urmann qMaterial properties of Ga0.47In0.53As grown on InP by low-temperature molecular beam epitaxy // Appl. Phys. Lett. 1992. V. 61, P. 1347. [CrossRef] [Google Scholar]
  9. R.A. Metzger, A.S. Brown, L.G. McCray and H.A. Henige. Structural and electrical properties of low temperature GaInAs // J. Vac. Sci. Tech. B. 1993. V. 11, P. 798. [CrossRef] [Google Scholar]
  10. M.R. Melloch, J.M. Woodall, E.S. Harmon, N. Otsuka, F.H. Pollak, D.D. Nolte, R.M. Feenstra and M.A. Lutz. Low-temperature grown III-V materials // Annu. Rev. Mater. Sci. 1995. V. 25, P. 547. [CrossRef] [Google Scholar]
  11. C. Baker, I.S. Gregory, W.R. Tribe, I.V. Bradley, M.J. Evans, E.H. Linfield and M. Missous. Highly resistive annealed low-temperature-grown InGaAs with sub-500fs carrier lifetimes // Appl. Phys. Lett. 2004. V. 85, P. 4965. [CrossRef] [Google Scholar]
  12. K.A. McIntosh, K.B. Nichols, S. Verghese and E.R. Brown. Optical and terahertz power limits in the low-temperature-grown GaAs photomixers // Appl. Phys. Lett. 1997, V. 70, P. 354. [CrossRef] [Google Scholar]
  13. B. Globisch, R.J.B. Dietz, D. Stanze, T. Göbel and M. Schell. Carrier dynamics in beryllium doped low-temper-ature-grown InGaAs/InAlAs // Appl. Phys. Lett. 2014. V. 104, P. 172103. [CrossRef] [Google Scholar]
  14. Z. Liliental-Weber, H.J. Cheng, S. Gupta, J. Whitaker, K. Nichols and F.W. Smith. Structure and carrier lifetime in LT-GaAs // J. Electron. Mater. 1993. V. 22, P. 1465. [CrossRef] [Google Scholar]
  15. U. Siegner, R. Fluck, G. Zhang and U. Keller. Ultrafast high-intensity nonlinear absorption dynamics in low-temperature grown gallium arsenide // Appl. Phys. Lett. 1996. V. 69, P. 2566. [CrossRef] [Google Scholar]
  16. H. Kuenzel, K. Biermann, D. Nickel and T. Elsaesser. Low-temperature MBE growth and characteristics of InP-basedAlInAs/GaInAs MQW structures // J. Cryst. Growth. 2001. V. 284, P. 227 [Google Scholar]
  17. R.J.B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel and M. Schell. Influence and adjustment of carrier lifetimesin InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range // Opt.Express. 2014. V. 22, P. 19411. [CrossRef] [Google Scholar]
  18. C. Baker, I.S. Gregory, W.R. Tribe, I.V. Bradley, M.J. Evans, E.H. Linfield and M. Missious. Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes // Appl. Phys. Lett. 2004, V. 85, P. 4965. [CrossRef] [Google Scholar]
  19. B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink. Iron doped InGaAs: Competitive THz emitters and detectors fabricated from same photoconductor. // J. Appl. Phys. 2017. V. 121, P. 053102. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.